Background: The functioning of the central nervous system is complex and it implies tight and coordinated interactions among multiple components. Neurotransmitters systems imbalance is a hallmark in the central nervous system (CNS) disorders. These pathologies profoundly impact the social, cultural, and economic perspective worldwide. The etiopathology of CNS illnesses is still poorly understood, making their treatment difficult. Brain angiotensin II (Ang II), through its AT1 receptors, modulates dopaminergic, glutamatergic and GABAergic neurotransmission, which are responsible for movement control, cognition, emotions and stress responses. Alterations of these functions, concomitant with modified brain reninangiotensin system (RAS) components, have been described in CNS pathologies like depression, Parkinson, Alzheimer, and schizophrenia. In this sense, altered functionality of angiotensin I converting enzyme and AT1 receptors, is associated with augmented susceptibility to the occurrence of these pathologies. Moreover, some epidemiological data showed lower incidence of Alzheimer disease in hypertensive patients under treatment targeting RAS; meanwhile preclinical studies relate RAS with Parkinson and depression. Little is known about schizophrenia and RAS; however, Ang II is closely related to dopamine and glutamate pathways, which are mainly altered in this pathology.
Conclusion: The available evidences, together with the results obtained by our group, open the possibility to postulate brain Ang II as a possible therapeutic target to treat the above-mentioned CNS disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/0929866524666170728144801 | DOI Listing |
Open Med (Wars)
January 2025
The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China.
Some of the millions of patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have developed new sequelae after recovering from the initial disease, termed post-acute sequelae of coronavirus disease 2019 (PASC). One symptom is anxiety, which is likely due to three etiologies: brain structural changes, neuroendocrine disruption, and neurotransmitter alterations. This review provides an overview of the current literature on the pathophysiological pathways linking coronavirus disease 2019 to anxiety, as well as the possible mechanisms of action in which an increasingly scrutinized treatment method, enhanced external counter-pulsation (EECP), is able to alleviate anxiety.
View Article and Find Full Text PDFFree Radic Biol Med
January 2025
Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea; Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Interdisciplinary Program for Bioinformatics, Program for Cancer Biology and BIO-MAX/N-Bio Institute, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:
Int J Mol Sci
January 2025
Department of Clinical Laboratory, School of Medicine, International University of Health and Welfare, Otawara 324-8501, Japan.
Intrauterine growth restriction (IUGR) is a risk factor for postnatal cardiovascular, metabolic, and psychiatric disorders. In most IUGR models, placental dysfunction that causes reduced 11β-hydroxysteroid dehydrogenase 2 (11βHSD2) activity, which degrades glucocorticoids (GCs) in the placenta, resulting in fetal GC overexposure. This overexposure to GCs continues to affect not only intrauterine fetal development itself, but also the metabolic status and neural activity in adulthood through epigenetic changes such as microRNA change, histone modification, and DNA methylation.
View Article and Find Full Text PDFAlzheimers Res Ther
January 2025
School of Medicine, South China University of Technology, Guangzhou, China.
Background: Epidemiological and genetic studies have elucidated associations between antihypertensive medication and Alzheimer's disease (AD), with the directionality of these associations varying upon the specific class of antihypertensive agents.
Methods: Genetic instruments for the expression of antihypertensive drug target genes were identified using expression quantitative trait loci (eQTL) in blood, which are associated with systolic blood pressure (SBP). Exposure was derived from existing eQTL data in blood from the eQTLGen consortium and in the brain from the PsychENCODE and subsequently replicated in GTEx V8 and BrainMeta V2.
Int J Mol Sci
December 2024
Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
Hypertension is a leading independent risk factor for the development of cardiovascular disease, the leading cause of death globally. Importantly, the prevalence of hypertension is positively correlated with obesity, with obesity-related hypertension being difficult to treat due to a lack of current guidelines in this population as well as limited efficacy and adverse off-target effects of currently available antihypertensive therapeutics. This highlights the need to better understand the mechanisms linking hypertension with obesity to develop optimal therapeutic approaches.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!