Platelets and their interaction with cells of the immune system contribute through a variety of molecular mechanisms to support hemostasis and inflammation. These simple yet essential cells exert their effects in lymphocytes, monocytes, and neutrophils, both recruiting and modulating their function after activation. Emerging evidence is starting to define the mechanisms that allow platelets to also play pivotal roles in host defense. For example, platelet cell-surface expression of toll-like receptors allows platelets to direct neutrophil activation toward extracellular trap formation and facilitate the elimination of blood pathogens. In addition to these well-known receptors, two of the most recently discovered platelet receptors, C-type lectin receptor 2 (CLEC-2), and TREM-like transcript-1 (TLT-1), have been shown to modulate hemostatic and inflammation-related roles in platelets. This review will discuss the evolution of our understanding of platelet functions from hemostasis to inflammation, and highlight novel mechanisms that platelets use to mediate hemostasis under inflammatory pressure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5531291 | PMC |
http://dx.doi.org/10.4172/2332-0877.1000149 | DOI Listing |
Platelets
December 2025
Department of Medicine, Center for the Prevention of Cardiovascular Disease, New York University School of Medicine, New York City, NY, USA.
Cardiometabolic risk factors, obesity, diabetes and hyperlipidemia contribute to cardiovascular disease (CVD). While platelets are involved in CVD pathogenesis, the relationship between risk factor burden on platelet indices and the platelet transcriptome remains uncertain. Blood was collected from CVD-free adults, measuring platelet count, mean platelet volume (MPV), immature platelet fraction (IPF), and absolute immature platelet fraction (AIPF) by hemogram.
View Article and Find Full Text PDFPlatelets
December 2025
Cyrus Tang Medical Institute, The Fourth Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.
Recent studies have shown that anti-ERp5 antibodies inhibit platelet activation and thrombus formation; Moreover, ERp5-deficient platelets exhibit enhanced platelet reactivity via regulation of endoplasmic reticulum (ER) stress. In this study, we used a new ERp5-knockout mouse model as well as recombinant ERp5 (rERp5) protein, to examine the role of ERp5 in platelet function and thrombosis. Although platelet-specific ERp5-deficient mice had decreased platelet count, the mice had shortened tail-bleeding times and enhanced platelet accumulation in FeCl-induced mesenteric artery injury, compared with wild-type mice.
View Article and Find Full Text PDFFront Neurol
January 2025
School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
Background: The predictive role of the lymphocyte-associated inflammation index in post-stroke cognitive impairment (PSCI) remains controversial. Therefore, we performed an updated meta-analysis to update the evidence.
Methods: This meta-analysis was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.
Biomed Rep
March 2025
Department of Rheumatology and Immunology, People's Hospital of Longhua, Shenzhen, Guangdong 518109, P.R. China.
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with a complex etiology primarily linked to abnormalities in B lymphocytes within the human body, resulting in the production of numerous pathogenic autoantibodies. Telitacicept is a relatively novel humanized, recombinant transmembrane activator, calcium modulator and cyclophilin ligand interactor fused with the Fc portion (TACI-Fc). It works by competitively inhibiting the TACI site, neutralizing the activity of B-cell lymphocyte stimulator and A proliferation-inducing ligand.
View Article and Find Full Text PDFFront Neurosci
January 2025
Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
Intracerebral hemorrhage (ICH) is a major public health challenge worldwide, and is associated with elevated rates of mortality, disability, and morbidity, especially in low- and middle-income nations. However, our knowledge of the detailed molecular processes involved in ICH remains insufficient, particularly those involved in the secondary injury stage, resulting in a lack of effective treatments for ICH. Human platelet lysates (HPL) are abundant in bioactive factors, and numerous studies have demonstrated their beneficial effects on neurological diseases, including their anti-neuroinflammatory ability, anti-oxidant effects, maintenance of blood-brain barrier integrity, and promotion of neurogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!