Tolerance induction (TI) has been attempted with chimerism/clonal deletion. We report results of TI protocol (TIP) using stem cell therapy (SCT) included adipose derived mesenchymal stem cells (AD-MSC) and hematopoietic stem cells (HSC) in 10 living-donor related renal transplantation (LDRT) patients under non-myeloablative conditioning with Bortezomib, Methylprednisone, rabbit-anti-thymoglobulin and Rituximab, without using conventional immunosuppression. Transplantation was performed following acceptable lymphocyte cross-match, flow cross-match, single antigen assay and negative mixed lymphocyte reaction (MLR). Monitoring included serum creatinine (SCr), donor specific antibodies (DSA) and MLR. Protocol biopsies were planned after 100days and yearly in willing patients. Rescue immunosuppression was planned for rejection/DSA/positive MLR. Over mean 6±0.37year follow-up patient survival was 80% and death-censored graft survival was 90%. Mean SCr was 1.44±0.41mg/dL. This is the first clinical report of sustained TI in LDRT for 6years using SCT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.clim.2017.07.024 | DOI Listing |
BMC Plant Biol
January 2025
Dr PDKV, Akola, Maharashtra, India.
Background: Changes in the temperature induction response are potential tools for the empirical assessment of plant cell tolerance. This technique is used to identify thermotolerant lines in field crops. In the present investigation, ten-day-old seedlings of six wheat genotypes released by Dr.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
Background: Cardiovascular disease causes vascular dementia and contributes to most clinical dementia. This is embodied in the concept of vascular contributions to cognitive impairment and dementia (VCID). The potent endogenous peptide endothelin-1 (ET1) causes small artery vasoconstriction and fibrosis.
View Article and Find Full Text PDFBackground: In Alzheimer's disease (AD), histone acetylation is disrupted, suggesting loss of transcriptional control. Moreover, converging evidence suggests an age- and AD-dependent loss of transcription controlled by all-trans-retinoic acid (ATRA), the bioactive metabolite of vitamin A (VA). Antioxidant depletion causes oxidative stress (OS).
View Article and Find Full Text PDFACS Chem Biol
January 2025
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.
Bacterial peptidoglycan, the essential cell surface polymer that protects bacterial integrity, also serves as the molecular pattern recognized by the host's innate immune system. Although the minimal motifs of bacterial peptidoglycan fragments (PGNs) that activate mammalian NOD1 and NOD2 sensors are well-known and often represented by small canonical ligands, the immunostimulatory effects of natural PGNs, which are structurally more complex and potentially can simultaneously activate both the NOD1 and NOD2 signaling pathways in hosts, have not been comprehensively investigated. In particular, many bacteria incorporate additional structural modifications in peptidoglycans to evade host immune surveillance, resulting in diverse structural variations among natural PGNs that may influence their biological effects in hosts.
View Article and Find Full Text PDFIntroduction: Patients with metastatic renal cell carcinoma have a poor prognosis and its specific pathogenesis remains unelucidated.
Case Presentation: At 78 years of age, a Japanese male patient was diagnosed with metastatic renal cell carcinoma (cT3N2M1 stage) and multiple brain metastases that were responsive to stereotactic radiation therapy followed by systemic combination induction therapy of pembrolizumab plus lenvatinib. Adverse events, including grade 3 hypertension, grade 2 eruption, and elevated grade 2 fever, were controlled by a dose reduction or suspension of drugs.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!