α5-containing GABARs are potential therapeutic targets for clinical conditions including age-related dementia, stroke, schizophrenia, Down syndrome, anaesthetic-induced amnesia, anxiety and pain. α5-containing GABARs are expressed in layer 5 cortical neurons and hippocampal pyramidal neurons where they mediate both tonic currents and slow inhibitory postsynaptic currents (IPSCs). A range of drugs has been developed to specifically modulate these receptors. The main α5-containing GABARs that are likely to exist in vivo are the α5β1γ2, α5β2γ2 and α5β3γ2 isoforms. We currently have few clues as to how these isoforms are distributed between synaptic and extrasynaptic compartments or their relative roles in controlling neuronal excitability. Accordingly, the aim of this study was to define the basic biophysical and pharmacological properties of IPSCs mediated by the three isoforms in a hippocampal neuron-HEK293 cell co-culture assay. The IPSC decay time constants were slow (α5β1γ2L: 45 ms; α5β1γ2L: 80 ms; α5β3γ2L: 184 ms) and were largely dominated by the intrinsic channel deactivation rates. By comparing IPSC rise times, we inferred that α5β1γ2L GABARs are located postsynaptically whereas the other two are predominantly perisynaptic. α5β3γ2L GABARs alone mediated tonic currents. We quantified the effects of four α5-specific inverse agonists (TB-21007, MRK-016, α5IA and L-655708) on IPSCs mediated by the three isoforms. All compounds selectively inhibited IPSC amplitudes and accelerated IPSC decay rates, albeit with distinct isoform specificities. MRK-016 also significantly accelerated IPSC rise times. These results provide a reference for future studies seeking to identify and characterize the properties of IPSCs mediated by α5-containing GABAR isoforms in neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2017.07.027DOI Listing

Publication Analysis

Top Keywords

α5-containing gabars
12
ipscs mediated
12
pharmacological properties
8
inhibitory postsynaptic
8
postsynaptic currents
8
α5β1γ2 α5β2γ2
8
α5β2γ2 α5β3γ2
8
tonic currents
8
properties ipscs
8
mediated three
8

Similar Publications

Behavioral Profiling in Zebrafish Identifies Insecticide-Related Compounds.

J Agric Food Chem

January 2025

Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California 94158, United States.

Pesticides, including insecticides, are indispensable for large-scale agriculture. Modulating chloride ion channels has proven highly successful as a mode of action (MoA) for insect management. Identifying new ligands for these channels affords opportunities for the potential development of new insecticide products.

View Article and Find Full Text PDF

Shifting Focus: The "Other" GABAR.

Epilepsy Curr

December 2024

Translational Neuroscience, Axonis Therapeutics.

View Article and Find Full Text PDF

Molecular and behavioral effects of Acamprosate in male rats with sodium salicylate-induced tinnitus.

Behav Brain Res

March 2025

Cellular and Molecular Research Center (CMRC), Iran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran. Electronic address:

Background: Imbalance in inhibitory and excitatory neurotransmitters have been reported in tinnitus. Acamprosate modulates the excitatory and inhibitory neurotransmission in the nucleus accumbens (NAc). This study aims to assess the effect of Acamprosate on tinnitus, anxiety, depression, and molecular changes in nucleus accumbens (NAc), in Sodium-Salisylate (S-salicylate) model of tinnitus.

View Article and Find Full Text PDF

Unlabelled: Chronic pain is a major global health issue, yet effective treatments are limited by poor translation from preclinical studies to humans. To address this, we developed a high-content screening (HCS) platform for analgesic discovery using hiPSC-derived nociceptors. These cells were cultured on multi-well micro-electrode arrays to monitor activity, achieving nearly 100% active electrodes by week two, maintaining stable activity for at least two weeks.

View Article and Find Full Text PDF

The Role of GABA Receptors in Anesthesia and Sedation: An Updated Review.

CNS Drugs

January 2025

Department of Anesthesiology, Jefferson Surgical Center Endoscopy, Sidney Kimmel Medical College, Jefferson Health, 111 S 11th Street, #7132, Philadelphia, PA, 19107, USA.

GABA (γ-aminobutyric acid) receptors are constituents of many inhibitory synapses within the central nervous system. They are formed by 5 subunits out of 19 various subunits: α1-6, β1-3, γ1-3, δ, ε, θ, π, and ρ1-3. Two main subtypes of GABA receptors have been identified, namely GABAA and GABAB.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!