Boron Switch for Selectivity of Catalytic Dehydrogenation on Size-Selected Pt Clusters on AlO.

J Am Chem Soc

Department of Chemistry & Biochemistry, University of California, Los Angeles , Los Angeles, California 90095, United States.

Published: August 2017

Size-selected supported clusters of transition metals can be remarkable and highly tunable catalysts. A particular example is Pt clusters deposited on alumina, which have been shown to dehydrogenate hydrocarbons in a size-specific manner. Pt, of the three sizes studied, is the most active and, therefore, like many other catalysts, deactivates by coking during reactions in hydrocarbon-rich environments. Using a combination of experiment and theory, we show that nanoalloying Pt with boron modifies the alkene-binding affinity to reduce coking. From a fundamental perspective, the comparison of experimental and theoretical results shows the importance of considering not simply the most stable cluster isomer, but rather the ensemble of accessible structures as it changes in response to temperature and reagent coverage.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.7b05894DOI Listing

Publication Analysis

Top Keywords

boron switch
4
switch selectivity
4
selectivity catalytic
4
catalytic dehydrogenation
4
dehydrogenation size-selected
4
size-selected clusters
4
clusters alo
4
alo size-selected
4
size-selected supported
4
supported clusters
4

Similar Publications

B,N-Embedded Helical Nanographenes Showing an Ion-Triggered Chiroptical Switching Function.

Angew Chem Int Ed Engl

January 2025

Okayama Daigaku Daigakuin Shizen Kagaku Kenkyuka, Division of Applied Chemistry, JAPAN.

Intramolecular aromatic oxidative coupling of 3,6-bis(m-terphenyl-2'-yl)carbazole provided a bis(m-terphenyl)-fused carbazole, while that of 3,6-bis(m-terphenyl-2'-yl)-1,8-diphenylcarbazole afforded a bis(quaterphenyl)-fused carbazole. Borylation of the latter furnished a B,N-embedded helical nanographene binding a fluoride anion via a structural change from the three-coordinate boron to the four-coordinate boron. The anionic charge derived from the fluoride anion is stabilized over the expanded p-framework, which leads to the high binding constant (Ka) of 1 × 105 M-1.

View Article and Find Full Text PDF

Single compounds displaying a wide range of luminescent colors are attractive optical materials for sensor applications. In this study, we present the beneficial combination of a cyclometalated iridium(III) complex scaffold and boronic acid units for designing stimuli-responsive luminescent materials with various emission colors. Five iridium(III) complexes bearing a diboronic acid ligand (bpyB2) were synthesized: Ir(C^N)bpyB2 (C^N = 2-phenylpyridine (1), 2-(2,4-difluorophenyl)pyridine (2), 2-(4-methoxyphenyl)pyridine (3), benzo[h]quinoline (4), 1-phenylisoquinoline (5)).

View Article and Find Full Text PDF

Enhancing Rashba Spin-Splitting Strength by Orbital Hybridization.

ACS Nano

December 2024

Department of Materials Science and Engineering, National University of Singapore, Singapore117575, Singapore.

Article Synopsis
  • A Rashba spin-splitting state allows for charge-spin interconversion through the interplay of inversion symmetry breaking (ISB) and spin-orbit coupling (SOC), which is key for developing efficient spintronic devices.
  • The study demonstrates that introducing orbital hybridization at the h-BN/CoPt interface increases the spin-splitting strength, enhancing the Rashba effect and spin-orbit torque (SOT) efficiency.
  • Results indicate significant improvements in switching efficiency and lower current thresholds, suggesting potential for advanced energy-efficient spintronic technologies.
View Article and Find Full Text PDF

When two BN layers are stacked in parallel in an AB or BA arrangement, a spontaneous out-of-plane electric polarization arises due to charge transfer in the out-of-plane B-N bonds. The ferroelectric switching from AB to BA (or BA to AB) can be achieved with a relatively small out-of-plane electric field through the in-plane sliding of one atomic layer over the other. However, the optical detection of such ferroelectric switching in hBN has not yet been demonstrated.

View Article and Find Full Text PDF

Polaritons in two-dimensional (2D) materials provide unique opportunities for controlling light at nanoscales. Tailoring these polaritons via gradient polaritonic surfaces with space-variant response can enable versatile light-matter interaction platforms with advanced functionalities. However, experimental progress has been hampered by the optical losses and poor light confinement of conventionally used artificial nanostructures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!