Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The objective of this work is to automatically produce radiological gradings of spinal lumbar MRIs and also localize the predicted pathologies. We show that this can be achieved via a Convolutional Neural Network (CNN) framework that takes intervertebral disc volumes as inputs and is trained only on disc-specific class labels. Our contributions are: (i) a CNN architecture that predicts multiple gradings at once, and we propose variants of the architecture including using 3D convolutions; (ii) showing that this architecture can be trained using a multi-task loss function without requiring segmentation level annotation; and (iii) a localization method that clearly shows pathological regions in the disc volumes. We compare three visualization methods for the localization. The network is applied to a large corpus of MRI T2 sagittal spinal MRIs (using a standard clinical scan protocol) acquired from multiple machines, and is used to automatically compute disk and vertebra gradings for each MRI. These are: Pfirrmann grading, disc narrowing, upper/lower endplate defects, upper/lower marrow changes, spondylolisthesis, and central canal stenosis. We report near human performances across the eight gradings, and also visualize the evidence for these gradings localized on the original scans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.media.2017.07.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!