Bovine mastitis is one of the most common diseases in the dairy industry and it is a major welfare problem. Pain during mastitis is generally assessed through behavior but a combination of indicators would increase the chances of detecting pain and assessing its intensity. The aim of this study was to assess behavioral and patho-physiological responses as possible signs of pain experienced by cows after experimental intramammary challenge (mastitis) with Escherichia coli. Six Holstein-Friesian cows received an inoculation of E. coli P4 in one healthy quarter. Evolution of the disease was assessed using bacteriological growth and somatic cell counts (SCC). Cows' response to the challenge was monitored by direct behavioral and clinical observations, data loggers, rumen temperature sensors, and indicators of inflammation, stress, and oxidative status. From all data recorded, the variables that contributed most to the discrimination of mastitis phases were obtained by factorial discriminant analysis. Baseline levels of all indicators corresponded to values before challenge. Specifically, we weighted data relating to lying behavior by the observations at the same hour of the day before challenge to eliminate the circadian rhythm effect. We identified 3 phases that were discriminated by factorial discriminant analysis with good performance. Nine indicators varied according to the phase of the disease: cows' attitude toward their surroundings, tail position, clinical signs, ear position, variation of postural changes, concentrations of haptoglobin and serum amyloid A (SAA), cortisol blood levels, and rumen temperature (as a surrogate for body temperature). In phase 1 (4 to 8 h postinoculation), E. coli proliferated exponentially in milk but inflammation indicators remained at baseline levels. Cows were less attentive toward their surroundings (median score, 0.63), and postural changes (lying/standing) were less frequent (0.75 times from baseline). In phase 2 (12 to 24 h postinoculation), bacterial concentrations peaked around 12 h and then began to decrease concomitantly with a sharp SCC increase. Cows were less attentive toward their surroundings (score, 0.54), had high plasma cortisol (31.3 ng/mL) and SAA (100.3 µg/mL) concentrations, and rumen temperature was increased (40.3°C). In phase 3 (32 to 80 h postinoculation), bacterial concentrations decreased concomitantly with high SCC levels. Cows had high levels of haptoglobin (0.57 mg/mL) and SAA (269 µg/mL) but showed no behavioral changes. Dairy cows displayed changes of behavioral, inflammatory, and stress parameters after E. coli mammary inoculation. Our results suggest that cows may have experienced discomfort in the preclinical phase (phase 1) and pain in the acute phase (phase 2) but neither discomfort nor pain in the remission phase (phase 3). Although larger controlled studies are needed to confirm our findings, this knowledge could be useful for early detection of E. coli mastitis and for decision-making regarding the initiation of pain-relief treatment during mastitis in dairy cows. This would improve animal welfare and potentially faster disease remission.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3168/jds.2017-12796 | DOI Listing |
Biomed Res Int
January 2025
College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia.
Bovine viral diarrhea virus (BVDV) is an important pathogen affecting dairy cattle all over the world by causing significant economic losses due to reproductive and respiratory problems, immunosuppressive effects, increased risk of morbidity, and calf mortality. A cross-sectional study was conducted from February 2021 to August 2021 to determine the seroprevalence of bovine viral diarrhea (BVD) and identify risk factors associated with its occurrence in and around Nekemte Town of Ethiopia. Blood samples were collected from 305 dairy cattle of 41 herds by using cluster-sampling method.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Department of Dairy Science, Faculty of Veterinary, Animal and Biomedical Sciences Sylhet Agricultural University Sylhet Bangladesh.
The emergence of antibiotic-resistant microorganisms has made antimicrobial resistance a global issue, and milk is a potential source for the propagation of resistant bacteria causing zoonotic diseases. Subclinical mastitis (SCM) cases, often overlooked and mixed with normal milk in dairy farms, frequently involve , which can spread through contaminated milk. We conducted this study to determine the prevalence of virulence genes, antibiotic resistance genes (ARGs), antimicrobial susceptibility, and the genetic relatedness of multidrug-resistant (MDR) Shiga toxin-producing (STEC) isolated from SCM milk.
View Article and Find Full Text PDFHeliyon
July 2024
Department of Medicine, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh.
Subclinical mastitis (SCM), a silent threat in the dairy sector of Bangladesh poses a significant economic impact and serves as a potential source of infection for healthy cows, hindering efforts to achieve milk self-sufficiency. Despite the importance of this issue, limited research has been conducted on mastitis in Sylhet region of Bangladesh. This study aimed to investigate the molecular prevalence, antimicrobial susceptibility profile and resistant genes detection on pathogens ( and causing SCM.
View Article and Find Full Text PDFFront Antibiot
April 2024
Transmission, Reservoir and Diversity of Pathogens Unit, Institut Pasteur, Les Abymes, France.
Introduction: This study aimed to understand the origin and to explain the maintenance of extended-spectrum β-lactamase (ESBL) isolated from food-producing animals in a third-generation cephalosporin (3GC)-free farm.
Methods: Culture and molecular approaches were used to test molecules other than 3GC such as antibiotics (tetracycline and oxytetracycline), antiparasitics (ivermectin, flumethrin, fenbendazol, and amitraz), heavy metal [arsenic, HNO, aluminum, HNO, cadmium (CdSO), zinc (ZnCl), copper (CuSO), iron (FeCl), and aluminum (AlSO)], and antioxidant (butylated hydroxytoluene) as sources of selective pressure. Whole-genome sequencing using short read (Illumina™) and long read (Nanopore™) technologies was performed on 34 genomes.
Narra J
December 2024
Department of Polymer Science and Engineering, Chonbuk National University, Jeonju, South Korea.
Placenta tissue has biological advantages, including anti-inflammatory, anti-bacterial, anti-fibrotic formation, and immunomodulatory properties. The amnion membrane (AM) is an inner side membrane of the placenta that faces the fetus. The main sources of amnion are humans and animals, with bovine being one of the significant sources.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!