Construction of a ratiometric fluorescent probe with an extremely large emission shift for imaging hypochlorite in living cells.

Spectrochim Acta A Mol Biomol Spectrosc

Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, PR China. Electronic address:

Published: January 2018

Hypochlorite is one of the important reactive oxygen species (ROS) and plays critical roles in many biologically vital processes. Herein, we present a unique ratiometric fluorescent probe (CBP) with an extremely large emission shift for detecting hypochlorite in living cells. Utilizing positively charged α,β-unsaturated carbonyl group as the reaction site, the probe CBP itself exhibited near-infrared (NIR) fluorescence at 662nm, and can display strong blue fluorescence at 456nm when responded to hypochlorite. Notably, the extremely large emission shift of 206nm could enable the precise measurement of the fluorescence peak intensities and ratios. CBP showed high sensitivity, excellent selectivity, desirable performance at physiological pH, and low cytotoxicity. The bioimaging experiments demonstrate the biological application of CBP for the ratiometric imaging of hypochlorite in living cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2017.07.011DOI Listing

Publication Analysis

Top Keywords

extremely large
12
large emission
12
emission shift
12
hypochlorite living
12
living cells
12
ratiometric fluorescent
8
fluorescent probe
8
imaging hypochlorite
8
probe cbp
8
hypochlorite
5

Similar Publications

Soil erosion susceptibility maps and raster dataset for the hydrological basins of North Africa.

Sci Data

January 2025

University of Southern California, Viterbi School of Engineering, 3737 Watt Way, Powell Hall of Engineering, Los Angeles, CA, 90089, USA.

Soil erosion in North Africa modulates agricultural and urban developments as well as the impacts of flash floods. Existing investigations and associated datasets are mainly performed in localized urban areas, often representing a limited part of a watershed. The above compromises the implementation of mitigation measures for this vast area under accentuating extremes and continuous hydroclimatic fluctuations.

View Article and Find Full Text PDF

Introduction: Medical progress has significantly improved the survival rates of very preterm-born infants in recent decades. Nevertheless, these infants are still at increased risk for long-term impairments as compared with term-born infants. While the homecoming of a preterm-born infant is long-awaited and brings relief to families, it also marks the end of intensive monitoring and highly specialised professional care.

View Article and Find Full Text PDF

Tailoring Water-in-DMSO Electrolyte for Ultra-stable Rechargeable Zinc Batteries.

Angew Chem Int Ed Engl

January 2025

University of Shanghai for Science and Technology, Institute of Energy Material Science, Shanghai 200093, Shanghai, CHINA.

Rechargeable zinc batteries (RZBs) are hindered by two primary challenges: instability of Zn anode and deterioration of the cathode structure in traditional aqueous electrolytes, largely attributable to the decomposition of active H2O. Here, we design and synthesize a non-flammable water-in-dimethyl sulfoxide electrolyte to address these issues. X-ray absorption spectroscopy, in situ techniques and computational simulations demonstrate that the activity of H2O in this electrolyte is extremely compressed, which not only suppresses the side reactions and increases the reversibility of Zn anode, but also diminishes the cathode dissolution and proton intercalation.

View Article and Find Full Text PDF

Irradiation of condensed matter with ionizing radiation generally causes direct photoionization as well as secondary processes that often dominate the ionization dynamics. Here, large helium (He) nanodroplets with radius ≳ 40 nm doped with lithium (Li) atoms are irradiated with extreme ultraviolet (XUV) photons of energy hν ≥ 44.4 eV and indirect ionization of the Li dopants is observed in addition to direct photoionization of the He droplets.

View Article and Find Full Text PDF

Superior Multimodal Luminescence in a Stable Single-Host Nanomaterial with Large-Scale Synthesis for High-Level Anti-Counterfeiting and Encryption.

Adv Sci (Weinh)

January 2025

Key Laboratory for High Efficiency Energy Conversion Science and Technology of Henan Province, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, P. R. China.

Multimode luminescent materials exhibit tunable photon emissions under different excitation or stimuli channels, endowing them high encoding capacity and confidentiality for anti-counterfeiting and encryption. Achieving multimode luminescence into a stable single material presents a promising but remains a challenge. Here, the downshifting/upconversion emissions, color-tuning persistent luminescence (PersL), temperature-dependent multi-color emissions, and hydrochromism are integrated into Er ions doped CsNaYbCl nanocrystals (NCs) by leveraging shallow defect levels and directed energy migration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!