Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: To determine the utility of APACHE II in a low-and middle-income (LMIC) setting and the implications of missing data.
Materials And Methods: Patients meeting APACHE II inclusion criteria admitted to 18 ICUs in Sri Lanka over three consecutive months had data necessary for the calculation of APACHE II, probabilities prospectively extracted from case notes. APACHE II physiology score (APS), probabilities, Standardised (ICU) Mortality Ratio (SMR), discrimination (AUROC), and calibration (C-statistic) were calculated, both by imputing missing measurements with normal values and by Multiple Imputation using Chained Equations (MICE).
Results: From a total of 995 patients admitted during the study period, 736 had APACHE II probabilities calculated. Data availability for APS calculation ranged from 70.6% to 88.4% for bedside observations and 18.7% to 63.4% for invasive measurements. SMR (95% CI) was 1.27 (1.17, 1.40) and 0.46 (0.44, 0.49), AUROC (95% CI) was 0.70 (0.65, 0.76) and 0.74 (0.68, 0.80), and C-statistic was 68.8 and 156.6 for normal value imputation and MICE, respectively.
Conclusions: An incomplete dataset confounds interpretation of prognostic model performance in LMICs, wherein imputation using normal values is not a suitable strategy. Improving data availability, researching imputation methods and developing setting-adapted and simpler prognostic models are warranted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcrc.2017.07.022 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!