AI Article Synopsis

Article Abstract

Changes in the activity of three mitochondrial enzymes in rat liver after in vitro ischemia have been determined by enzyme histochemical methods. The changes were correlated with the appearance in the electron microscope of flocculent densities in the mitochondria indicative of irreversible cell injury. The flocculent densities were observed in rat liver after about 2 h of ischemia in vitro at 37 degrees C. At the same time the activity of glutamate dehydrogenase, localized in the mitochondrial matrix, started to decrease. However, the activities of succinate dehydrogenase localized in the inner membrane of mitochondria, as well as monoamine oxidase of the mitochondrial outer membrane did not change at that stage. It is concluded from the results of this study and those of others that flocculent densities are formed by denaturation of proteins of the mitochondrial matrix in which glutamate dehydrogenase takes part. It should be considered more as a sign than as the cause of cell death.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF02899041DOI Listing

Publication Analysis

Top Keywords

rat liver
12
flocculent densities
12
liver ischemia
8
ischemia vitro
8
glutamate dehydrogenase
8
dehydrogenase localized
8
mitochondrial matrix
8
mitochondrial
5
histochemical study
4
study changes
4

Similar Publications

Iron overload in transfusion-dependent thalassemia patients represents a significant public health challenge due to its high mortality rate and risks of severe complications. Therefore, developing safe and effective therapeutic modalities for managing iron overload is critical, as current animal models inadequately replicate human conditions. The aim of this study was to investigate the effects of intravenous iron dextran on hepatocyte morphology, liver iron concentration, and serum iron profile changes as a model for hemochromatosis.

View Article and Find Full Text PDF

Oxidative stress and neuronal apoptosis could be an important factor leading to post-hemorrhagic consequences after germinal matrix hemorrhage (GMH). Previously study have indicated that relaxin 2 receptor activation initiates anti-oxidative stress and anti-apoptosis in ischemia-reperfusion injury. However, whether relaxin 2 activation can attenuate oxidative stress and neuronal apoptosis after GMH remains unknown.

View Article and Find Full Text PDF

Bile acids (BAs) play important roles in the context of lipid homeostasis and inflammation. Based on extensive preclinical mouse studies, BA signaling pathways have been implicated as therapeutic targets for cardiovascular diseases. However, differences in BA metabolism between mice and humans hamper translation of preclinical outcomes.

View Article and Find Full Text PDF

A self-gelling hemostatic powder boosting radiotherapy-elicited NK cell immunity to combat postoperative hepatocellular carcinoma relapse.

Biomaterials

December 2024

Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Biotherapy Centre & Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China. Electronic address:

Liver resection represents a main curative treatment for patients with early-stage hepatocellular carcinoma (HCC), but there is a rather high incidence of postoperative HCC relapse, which severely shortens long-term survival time. Currently, no standard adjuvant strategies are available for preventing HCC relapse in clinical practice. Impaired natural killer (NK) cell anti-tumor immunity has been disclosed as a crucial root of HCC relapse, indicating that reinstating NK cell anti-tumor immunity may show promise to curb HCC relapse.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!