Associations of current diet with plasma and urine TMAO in the KarMeN study: direct and indirect contributions.

Mol Nutr Food Res

Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Germany.

Published: November 2017

Scope: Knowledge on the influence of current diet on trimethylamine-N-oxide (TMAO) levels in humans is still inconsistent. Thus, we aimed to investigate associations of current diet with urine and plasma TMAO levels and to determine the effect of different foods on TMAO variation.

Methods And Results: TMAO concentrations of 297 healthy individuals were assessed using H-NMR spectroscopy for 24 h urine collection and spot urine, and LC-MS for plasma. Of 35 assessed food groups, those with a correlation of ρ >|0.15| with plasma or urine TMAO levels were further investigated in multivariate linear regression models showing current fish and (red) meat consumption as plausible dietary sources of TMAO. Overall, explained variance of TMAO levels by current diet and co-variables (age, sex, lean body mass, glomerular filtration rate) was small. Associations with urine and plasma concentrations differed depending on the TMAO source. Fish consumption was associated with urine and plasma TMAO concentrations, whereas meat consumption was only associated with TMAO concentrations in plasma. Furthermore, associations of plasma TMAO concentration with fish consumption were two times stronger than with meat consumption.

Conclusion: Meat and fish consumption differentially affects TMAO concentrations in body fluids. Only a small fraction of variance is explained by current diet.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mnfr.201700363DOI Listing

Publication Analysis

Top Keywords

current diet
20
tmao levels
16
tmao concentrations
16
tmao
13
urine plasma
12
plasma tmao
12
fish consumption
12
associations current
8
plasma
8
plasma urine
8

Similar Publications

Background: The current study investigated the effects of high-fat diet on acute response to 3,4-methylenedioxypyrovalerone (MDPV) in mice. MDPV is a beta-cathinone derivative endowed with psychostimulant activity. Similarly to recreational substances, consumption of palatable food stimulates the mesolimbic dopaminergic system, resulting in neuroadaptive changes.

View Article and Find Full Text PDF

Objective: To conduct a scoping review to summarize the state of the evidence on associations between participation in nonfood social safety net programs (eg, income assistance, housing assistance) in the United States and food- and nutrition insecurity-related outcomes.

Background: Food and nutrition insecurity are persistent public health challenges in the United States that increase chronic disease risk and exacerbate health disparities. Several food assistance programs enhance food and nutrition security.

View Article and Find Full Text PDF

Sustainability concerns have increased consumer demand for non-animal-derived proteins and the search for novel, alternative protein sources. The nutritional sustainability of the food system without compromising the nutrient quality, composition, digestibility and consumption is pivotal. As with farmed livestock, it is imperative to ensure the well-being and food security of companion animals and to develop sustainable and affordable pet foods.

View Article and Find Full Text PDF

The last decennia have witnessed spectacular advances in our knowledge about the influence of the gut microbiome on the development of a wide swathe of diseases that extend beyond the digestive tract, including skin diseases like psoriasis, atopic dermatitis, acne vulgaris, rosacea, alopecia areata, and hidradenitis suppurativa. The novel concept of the gut-skin axis delves into how skin diseases and the microbiome interact through inflammatory mediators, metabolites, and the intestinal barrier. Elucidating the effects of the gut microbiome on skin health could provide new opportunities for developing innovative treatments for dermatological diseases.

View Article and Find Full Text PDF

For similar species to co-occur in places where resources are limited, they need to adopt strategies that partition resources to reduce competition. Our understanding of the mechanisms behind resource partitioning among sympatric marine predators is evolving, but we lack a clear understanding of how environmental change is impacting these dynamics. We investigated spatial and trophic resource partitioning among three sympatric seabirds with contrasting biological characteristics: greater crested terns Thalasseus bergii (efficient flyer, limited diver, and preference for high quality forage fish), little penguins Eudyptula minor (flightless, efficient diver, and preference for high quality forage fish) and silver gulls Chroicocephalus novaehollandiae (efficient flyer, limited diver and generalist diet).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!