The sodium (Na )-calcium (Ca ) exchanger 1 (NCX1) is an antiporter membrane protein encoded by the SLC8A1 gene. In the heart, it maintains cytosolic Ca homeostasis, serving as the primary mechanism for Ca extrusion during relaxation. Dysregulation of NCX1 is observed in end-stage human heart failure. In this study, we used affinity purification coupled with MS in rat left ventricle lysates to identify novel NCX1 interacting proteins in the heart. Two screens were conducted using: (1) anti-NCX1 against endogenous NCX1 and (2) anti-His (where His is histidine) with His-trigger factor-NCX1 recombinant protein as bait. The respective methods identified 112 and 350 protein partners, of which several were known NCX1 partners from the literature, and 29 occurred in both screens. Ten novel protein partners (DYRK1A, PPP2R2A, SNTB1, DMD, RABGGTA, DNAJB4, BAG3, PDE3A, POPDC2, STK39) were validated for binding to NCX1, and two partners (DYRK1A, SNTB1) increased NCX1 activity when expressed in HEK293 cells. A cardiac NCX1 protein-protein interaction map was constructed. The map was highly connected, containing distinct clusters of proteins with different biological functions, where "cell communication" and "signal transduction" formed the largest clusters. The NCX1 interactome was also significantly enriched with proteins/genes involved in "cardiovascular disease" which can be explored as novel drug targets in future research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/pmic.201600417 | DOI Listing |
Prev Nutr Food Sci
December 2024
Department of Biology, Faculty of Science, Firat University, Elazig 23100, Türkiye.
Magnesium (Mg) is a mineral necessary for many biological activities in mammals. Here, we compared the effect of two Mg compounds [Mg picolinate (MgPic) to Mg oxide (MgO)] on Mg bioavailability and intestinal Mg and calcium transporter protein levels. Three groups of 21 male Wistar-Albino rats were randomly allocated and fed a standard diet (control) or a 500 mg/kg Mg-supplemented (MgPic or MgO) diet for 8 weeks.
View Article and Find Full Text PDFToxins (Basel)
December 2024
Univ. Angers, INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, 49000 Angers, France.
The vegetal alkaloid toxin veratridine (VTD) is a selective voltage-gated Na (Na) channel activator, widely used as a pharmacological tool in vascular physiology. We have previously shown that Na channels, expressed in arteries, contribute to vascular tone in mouse mesenteric arteries (MAs). Here, we aimed to better characterize the mechanisms of action of VTD using mouse cecocolic arteries (CAs), a model of resistance artery.
View Article and Find Full Text PDFBiosci Rep
December 2024
University of Lincoln College of Science, Lincoln, United Kingdom.
Cellular Ca2+ homeostasis is critical for normal cell physiology and is regulated by several mechanisms. Two major players in intracellular Ca2+ homeostasis in multiple tissues belong to SLC8 (Na+/Ca2+ exchangers (NCXs); NCX1-3) and SLC24 (K+ dependent Na+/Ca2+ exchangers (NCKXs); NCKX1-5) families. It has been established that NCXs and NCKX4 are palmitoylated, and that palmitoylation promotes NCX1 inactivation.
View Article and Find Full Text PDFbioRxiv
December 2024
Howard Hughes Medical Institute and Department of Physiology, the University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Na/Ca exchangers (NCXs) transport Ca across the plasma membrane in exchange for Na and play a vital role in maintaining cellular Ca homeostasis. Our previous structural study of human cardiac NCX1 (HsNCX1) reveals the overall architecture of the eukaryotic exchanger and the formation of the inactivation assembly by the intracellular regulatory domain that underlies the cytosolic Na-dependent inactivation and Ca activation of NCX1. Here we present the cryo-EM structures of HsNCX1 in complex with a physiological activator phosphatidylinositol 4,5-bisphosphate (PIP), or pharmacological inhibitor SEA0400 that enhances the inactivation of the exchanger.
View Article and Find Full Text PDFCell Calcium
December 2024
Department of Chemistry, Harvard University, Cambridge, MA 02138, USA; Department of Physics, Harvard University, Cambridge, MA 02138, USA. Electronic address:
Calcium mediates many important signals in dendrites. However, the basic transport properties of calcium in dendrites have been difficult to measure: how far and how fast does a local influx of calcium propagate? We developed an all-optical system for simultaneous targeted Ca import and Ca concentration mapping. We co-expressed a blue light-activated calcium selective channelrhodopsin, CapChR2, with a far-red calcium sensor, FR-GECO1c, in cultured rat hippocampal neurons, and used patterned optogenetic stimulation to introduce calcium into cells with user-defined patterns of space and time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!