Controlling Hyperhydricity in Date Palm In Vitro Culture by Reduced Concentration of Nitrate Nutrients.

Methods Mol Biol

Central Laboratory of Date Palm Research and Development, Agriculture Research Center, 9 Gamma Street, Giza, 12622, Egypt.

Published: April 2018

Hyperhydricity (or vitrification) is a fundamental physiological disorder in date palm micropropagation. Several factors have been ascribed as being responsible for hyperhydricity, which are related to the explant, medium, culture vessel, and environment. The optimization of inorganic nutrients in the culture medium improves in vitro growth and morphogenesis, in addition to controlling hyperhydricity. This chapter describes a protocol for controlling hyperhydricity during the embryogenic callus stage by optimizing the ratio of nitrogen salts of the Murashige and Skoog (MS) nutrient culture medium. The best results of differentiation from cured hyperhydric callus are obtained using modification at a ratio of NH/NO at 10:15 (825:1425 mg/L) of the MS culture medium to remedy hyperhydric date palm callus and achieve the recovery of normal embryogenic callus and subsequent regeneration of plantlets. Based on the results of this study, nutrient medium composition has an important role in avoiding hyperhydricity problems during date palm micropropagation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-7156-5_15DOI Listing

Publication Analysis

Top Keywords

controlling hyperhydricity
12
culture medium
12
palm micropropagation
8
embryogenic callus
8
culture
5
hyperhydricity
5
medium
5
palm
4
hyperhydricity palm
4
palm vitro
4

Similar Publications

Control of hyperhydricity of Pistacia khinjuk stocks in vitro shoots.

BMC Biotechnol

November 2024

Department of Food Processing, Vocational School of Technical Science, Batman University, Batman, Turkey.

Hyperhydricity is the most extensive physiological disorder during in vitro propagation. This disturbance can induce anatomical, morphological and physiological problems that cause serious damage. The factors that cause hyperhydricity are the composition of nutrient media and cultures conditions.

View Article and Find Full Text PDF

The propagation of oil palm through somatic embryogenesis is the most effective method of cloning this palm tree; however, in vitro cultivation can lead to abnormalities in plant tissue, such as hyperhydricity. The present study aimed to evaluate the difference in anatomical, morphological, and histochemical characteristics, and gene expression in normal (Nm) and hyperhydric (Hh) somatic embryos of oil palm. For this purpose, Nm and Hh somatic embryos were collected from the differentiation medium and were submitted to anatomical and histochemical analyses to assess the nucleus/cytoplasm ratio (toluidine blue), starch (Lugol), and proteins (XP), as well as ultrastructural analyses via transmission electron microscopy.

View Article and Find Full Text PDF

Hyperhydricity (HH) often occurs in plant tissue culture, seriously influencing the commercial micropropagation and genetic improvement. DNA methylation has been studied for its function in plant development and stress responses. However, its potential role in HH is unknown.

View Article and Find Full Text PDF

Hyperhydricity (HH) is a physiological disorder that frequently occurs in plant tissue cultures, affecting healthy growth and development of clonal plants. The primary cultures raised in Murashige and Skoog (MS) medium supplemented with 2.5 µM N-benzyladenine (BA) produced normal microshoot (6.

View Article and Find Full Text PDF

The present study depicted the role of silicon in limiting the hyperhydricity in shoot cultures of carnation through proteomic analysis. Four-week-old healthy shoot cultures of carnation "Purple Beauty" were sub-cultured on Murashige and Skoog medium followed with four treatments, viz. control (-Si/-Hyperhydricity), hyperhydric with no silicon treatment (-Si/+Hyperhydricity), hyperhydric with silicon treatment (+Si/+Hyperhydricity), and only silicon treated with no hyperhydricity (+Si/-Hyperhydricity).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!