Molecular cloning, characterization, and expression of duck 2'-5'-oligoadenylate synthetase-like gene.

Gene

Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China. Electronic address:

Published: September 2017

2'-5'-Oligoadenylate synthetase-like protein (OASL) is an interferon-inducible antiviral protein that exerts antiviral effects through the RNase L- or retinoic acid-inducible gene I (RIG-I)-dependent signalling pathway. In this study, we identified and cloned the OASL gene (named duOASL) from healthy adult Cherry Valley ducks. Full-length duOASL cDNA (1630bp) encoded a 504-amino acid polypeptide containing three conserved domains, namely, nucleotidyltransferase domain, 2'-5'-oligoadenylate synthetase domain, and two ubiquitin-like repeats. DuOASL mRNA expression was quantified by performing quantitative reverse transcription-PCR (qRT-PCR). Results of qRT-PCR showed that duOASL was broadly expressed in all examined tissues, with the highest mRNA expression in the large intestine. Antiviral activity of duOASL was measured by determining its effect on Duck Tembusu virus (DTMUV) replication in vitro. We found that duOASL overexpression slightly inhibited DTMUV replication, whereas duOASL knockdown by using a specific small interfering RNA increased DTMUV replication in DF-1 cells. Thus, we successfully cloned and characterized the antiviral protein duOASL from Cherry Valley ducks and found that it exerted antiviral effects against DTMUV. These results provide a solid foundation for performing further studies to determine the mechanism underlying the antiviral effect of duOASL at the cellular level.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2017.07.067DOI Listing

Publication Analysis

Top Keywords

dtmuv replication
12
duoasl
9
2'-5'-oligoadenylate synthetase-like
8
antiviral protein
8
antiviral effects
8
cherry valley
8
valley ducks
8
mrna expression
8
antiviral
6
molecular cloning
4

Similar Publications

Dynamics of immune responses following duck Tembusu virus infection in adult laying ducks reveal the effect of age-related immune variation on disease severity.

Poult Sci

December 2024

Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand, 10330; Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals (CUEIDAs), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand, 10330; Center of Excellence in Animal Vector-Borne Diseases, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand, 10330; Center of Excellence of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand, 10330. Electronic address:

Duck Tembusu virus (DTMUV), an emerging avian pathogenic flavivirus, is notably associated with neurological disorders and acute egg drop syndrome in ducks. We previously demonstrated that the susceptibility of ducks to DTMUV infection varies significantly with age, with younger ducks (4-week-old) exhibiting more severe disease than older ducks (27-week-old). However, the immunological mechanisms underlying these age-related differences in disease severity remain unclear.

View Article and Find Full Text PDF

Isolation, identification, and pathogenicity evaluation of a novel Cluster 3 Tembusu virus isolated from geese in China.

Poult Sci

December 2024

Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China. Electronic address:

Tembusu virus (TMUV) is a significant pathogen that poses a considerable threat to the waterfowl farming industry in China and is classified into three distinct genetic clusters. In 2024, a suspected outbreak of TMUV infection was reported at a goose farm in Guangdong Province, China. A strain of TMUV, designated GDE19-2024, was successfully isolated using chicken embryos.

View Article and Find Full Text PDF

Characterization of duck tembusu virus NS2A membrane topology and functional residues in transmembrane domain-3 on viral proliferation.

Poult Sci

December 2024

Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Agricultural Bioinformatics of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China. Electronic address:

Article Synopsis
  • Flavivirus nonstructural protein 2A (NS2A) plays a vital role in viral replication, assembly, and evading the host immune response, but its membrane topology was previously unclear.
  • This study offers the first detailed model of DTMUV NS2A’s membrane structure, showing its localization in the endoplasmic reticulum and interaction with viral RNA.
  • Mutations in specific amino acids were found to affect the virus's ability to synthesize RNA and assemble, highlighting the importance of NS2A in the virus life cycle and its potential impact on virulence.
View Article and Find Full Text PDF

Duck Tembusu virus (DTMUV) is an acute avian flavivirus that primarily infects poultry, mosquitoes, and some mammals including humans. The viral infection triggers reactive oxygen species (ROS) and inflammatory response that are crucial in mediating injury. Crafting multifunctional nanozymes that possess both ROS scavenging and anti-inflammatory activities presents formidable challenges.

View Article and Find Full Text PDF

The greasy finger region of DTMUV NS1 plays an essential role in NS1 secretion and viral proliferation.

Poult Sci

December 2024

Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education of the People's Republic of China, Chengdu 611130, China. Electronic address:

Duck Tembusu virus (DTMUV) of the Orthoflavivirus genus poses a significant threat to waterfowl aquaculture. Nonstructural protein 1 (NS1), a multifunctional glycoprotein, exists in various oligomeric forms and performs diverse functions. The greasy finger (GF) region within NS1 of other flaviviruses has been shown to be a crucial component of the hydrophobic protrusion aiding in anchoring NS1 to the endoplasmic reticulum (ER).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!