LncRNAs play a vital role in alternative splicing of target genes. However, the mechanisms underlying lncRNAs involvement in splicing are poorly understood. In the present study, we identified a previously uncharacterized lncRNA, which is denoted as TPM1-AS, is reverse-transcribed from the fourth intronic region of the tropomyosin I (TPM1). In situ hybridization and RNA immunoprecipitation assays demonstrated that TPM1-AS was located in the nucleus and interacted with RNA-binding motif protein 4 (RBM4) in human esophageal cancer cells. TPM1-AS overexpression or RBM4 knockdown decreased endogenous exon 2a expression of TPM1, resulting in specifically down-regulation of TPM1variant V2 and V7 in human esophageal cancer cells. Mechanismly, the interaction of TPM1-AS with RBM4 hindered binding of RBM4 to TPM1 pre-mRNA and inhibited RBM4 to promote endogenous exon 2a inclusion of TPM1. Importantly, overexpression of TPM1-AS inhibited migration and filopodium formation, whereas TPM1variant V2 and V7 promoted these behaviors of human esophageal cancer cells. Taken together, the results suggest that a natural antisense TPM1-AS regulates the alternative splicing of TPM1 through an interaction with RBM4 and involves in TPM1-mediated filopodium formation and migration of cancer cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biocel.2017.07.017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!