Cannabinoid system of dorsomedial telencephalon modulates behavioral responses to noxious stimulation in the fish Leporinus macrocephalus.

Physiol Behav

Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, SP, Brazil.

Published: October 2017

Fish dorsomedial telencephalon has been considered a pallial region homologous to mammals amygdala, being considered a possible substrate for nociception modulation in this animal group. The present study aimed to evaluate the participation of the cannabinoid system of Dm telencephalon on nociception modulation in the fish Leporinus macrocephalus. We demonstrated that cannabidiol microinjection in Dm telecephalon inhibits the behavioral nociceptive response to the subcutaneous injection of 3% formaldehyde, and this antinociception is blocked by previous treatment with AM251 microinjection. Furthermore, AM251 microinjection in Dm prior to restraint stress also blockades the stress-induced antinociception. These results reinforce the hypothesis that this pallial telencephalic structure has a pivotal role in nociception modulation in fish.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.physbeh.2017.07.027DOI Listing

Publication Analysis

Top Keywords

nociception modulation
12
cannabinoid system
8
dorsomedial telencephalon
8
fish leporinus
8
leporinus macrocephalus
8
modulation fish
8
am251 microinjection
8
system dorsomedial
4
telencephalon modulates
4
modulates behavioral
4

Similar Publications

Transient Receptor Potential (TRP) channels are a family of ion channels that play pivotal roles in various physiological processes, including sensory transduction, temperature regulation, and inflammation. In the context of dentistry, recent research has highlighted the involvement of TRP channels in mediating sensory responses and inflammation in dental tissues and temporo-mandibular joint (TMJ) structure. TRP channels have emerged as major contributors in the development of inflammatory conditions and pain affecting the oral cavity and related structures, such as periodontitis, dental erosion cause hypersensitivity, pulpitis, and TMJ disorders.

View Article and Find Full Text PDF

The anterior cingulate cortex (ACC) is recognized as a pivotal cortical region involved in the perception of pain. The retrosplenial cortex (RSC), located posterior to the ACC, is known to play a significant role in navigation and memory processes. Although the projections from the RSC to the ACC have been found, the specifics of the synaptic connections and the functional implications of the RSC-ACC projections remain less understood.

View Article and Find Full Text PDF

The Ca 3.2 isoform of T-type voltage-gated calcium channels plays a crucial role in regulating the excitability of nociceptive neurons; the endogenous molecules that modulate its activity, however, remain poorly understood. Here, we used serum proteomics and patch-clamp physiology to discover a novel peptide albumin (1-26) that facilitates channel gating by chelating trace metals that tonically inhibit Ca 3.

View Article and Find Full Text PDF

Neuron Modulation by Synergetic Management of Redox Status and Oxidative Stress.

Small

January 2025

Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China.

The transient receptor potential (TRP) channel is a key sensor for diverse cellular stimuli, regulating the excitability of primary nociceptive neurons. Sensitization of the TRP channel can heighten pain sensitivity to innocuous or mildly noxious stimuli. Here, reversible modulation of TRP channels is achieved by controlling both the light-induced photoelectrochemical reaction to induce neuronal depolarization, and antioxidants for neuronal protection.

View Article and Find Full Text PDF

Background: Healthy individuals demonstrate considerable heterogeneity upon dynamic quantitative sensory testing assessment of endogenous pain modulatory mechanisms. For those who stratify into a 'pro-nociceptive profile' cohort, consisting of inefficient conditioned pain modulation (CPM) and elevated temporal summation of pain (TSP), the optimal approach for balancing the net output of pain modulatory processes towards anti-nociception remains unresolved. In this translational healthy human and rat study, we examined whether descending modulation countered spinal amplification during concurrent application of a CPM and TSP paradigm alongside pupillometry since pontine activity was previously linked to functionality of endogenous pain modulatory mechanisms and pupil dilation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!