Parallel zippering of the SNARE domains of syntaxin 1A/B, SNAP-25, and VAMP/synaptobrevin 2 is widely regarded as supplying the driving force for exocytotic events at nerve terminals and elsewhere. However, in spite of intensive research, no consensus has been reached concerning the molecular mechanism by which these SNARE proteins catalyze membrane fusion. As an alternative to SNARE-based models, a scenario was developed in which synaptotagmin 1 (or, 2) can serve as a template to guide lipid movements that underlie fast, synchronous exocytosis at nerve terminals. This "dyad model" advanced a novel proposal concerning the membrane disposition of the palmitoylated, cysteine-rich region of these synaptotagmins. Unexpectedly, it now emerges that a similar principle can be exploited to reveal how the hydrophobic, carboxyl-terminal domains of syntaxin 1A and synaptobrevin 2 can perturb membrane structure at the interface between a docked synaptic vesicle and the plasma membrane. These "β-to-α transition" models will be compared and contrasted with other proposals for how macromolecules are thought to intervene to drive membrane fusion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5536069PMC
http://dx.doi.org/10.3390/ijms18071582DOI Listing

Publication Analysis

Top Keywords

domains syntaxin
12
syntaxin synaptobrevin
8
nerve terminals
8
membrane fusion
8
membrane
5
membrane-fusion model
4
model exploits
4
exploits β-to-α
4
β-to-α transition
4
transition hydrophobic
4

Similar Publications

Botulinum toxin (BoNT), the most potent substance known to humans, likely evolved not to kill but to serve other biological purposes. While its use in cosmetic applications is well known, its medical utility has become increasingly significant due to the intricacies of its structure and function. The toxin's structural complexity enables it to target specific cellular processes with remarkable precision, making it an invaluable tool in both basic and applied biomedical research.

View Article and Find Full Text PDF

Tail Anchored protein insertion mediated by CAML and TRC40 links to neuromuscular function in mice.

PLoS Genet

January 2025

Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 1st St. SW, Rochester, Minnesota 55905, United States of America.

Motor neuron diseases, such as amyotrophic lateral sclerosis (ALS) and progressive bulbar palsy, involve loss of muscle control resulting from death of motor neurons. Although the exact pathogenesis of these syndromes remains elusive, many are caused by genetically inherited mutations. Thus, it is valuable to identify additional genes that can impact motor neuron survival and function.

View Article and Find Full Text PDF
Article Synopsis
  • * Research reveals that the CD225 domain harbors a SNARE-like motif, enabling interactions with SNARE proteins, which are essential for membrane fusion; this is particularly important in diseases linked to mutations in these regions, such as neurological disorders.
  • * One member, IFITM3, is shown to interact with SNARE proteins to protect against influenza A virus by disrupting SNARE complex assembly and enhancing endosomal cargo movement to lysosomes, suggesting a key role for SNARE modulation in the diverse functions of CD225
View Article and Find Full Text PDF

Identification of a novel Golgi-localized putative glycosyltransferase protein in .

Plant Biotechnol (Tokyo)

March 2024

Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan.

SNAREs play an important role in the process of membrane trafficking. In the present research, we investigated subcellular localization of an uncharacterized protein reported to interact with a -Golgi network-localized Qa-SNARE, SYNTAXIN OF PLANTS 43. Based on the similarity of its amino acid sequence to metazoan fucosyltransferases, we have named this novel protein AtGTLP ( lycosylransferase-ike rotein) and predicted that it should be a member of yet uncharacterized family of Arabidopsis fucosyltransferases, as it shows no significant sequence similarity to fucosyltransferases previously identified in Arabidopsis.

View Article and Find Full Text PDF

The Ca sensor synaptotagmin-1 (Syt1) triggers neurotransmitter release together with the neuronal sensitive factor attachment protein receptor (SNARE) complex formed by syntaxin-1, SNAP25, and synaptobrevin. Moreover, Syt1 increases synaptic vesicle (SV) priming and impairs spontaneous vesicle release. The Syt1 CB domain binds to the SNARE complex through a primary interface via two regions (I and II), but how exactly this interface mediates distinct functions of Syt1 and the mechanism underlying Ca triggering of release are unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!