Second harmonic generation has been widely used in characterizing microstructural changes which are evenly distributed in a whole structure. However, few attention has been paid to evaluating localized micro-scale damages. In this paper, second harmonic reflection and transmission from the primary S0 mode Lamb wave interacting with a localized microstructural damage is numerically discussed. Schematic diagram for deriving fundamental temporal waveform and reconstructing the second harmonic temporal waveform based on Morlet wavelet transform is presented. Second harmonic reflection and transmission from an interface between the zones of linear elastic and nonlinear materials is firstly studied to verify the existence of interfacial nonlinearity. Compositions contributing to second harmonic components in the reflected and transmitted waves are analyzed. Amplitudes of the reflected and transmitted second harmonic components generated at an interface due to the interfacial nonlinearity are quantitatively evaluated. Then, second harmonic reflection and transmission from a localized microscale damage is investigated. The effects of the length and width of a microscale damage on WCPA (wavelet coefficient profile area) of the reflected and transmitted second harmonic components are studied respectively. It is found that the second harmonic component in the reflected waves mainly reflects the interfacial nonlinearity while second harmonic in the transmitted waves reflects the material nonlinearity. These findings provide some basis on using second harmonic generation for characterization and detection of localized microstructural changes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultras.2017.07.005 | DOI Listing |
Adv Mater
January 2025
Department of Mechanical and Aerospace Engineering, Program of Materials Science and Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
Changes in the density and organization of fibrous biological tissues often accompany the progression of serious diseases ranging from fibrosis to neurodegenerative diseases, heart disease and cancer. However, challenges in cost, complexity, or precision faced by existing imaging methodologies and materials pose barriers to elucidating the role of tissue microstructure in disease. Here, we leverage the intrinsic optical anisotropy of the Morpho butterfly wing and introduce Morpho-Enhanced Polarized Light Microscopy (MorE-PoL), a stain- and contact-free imaging platform that enhances and quantifies the birefringent material properties of fibrous biological tissues.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Functional Crystals Lab, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
Tetrahedral halides with broad transparency and large second harmonic effects have the potential to serve as mid-infrared wide-bandgap materials with balanced nonlinear-optical (NLO) properties. However, their regular tetrahedral motifs tend to exhibit low optical birefringence (Δ < 0.03) due to limited structural anisotropy, which constrains their practical phase-matched capability.
View Article and Find Full Text PDFChronobiol Int
January 2025
Google LLC, San Francisco, California, USA.
Circadian rhythms are governed by a biological clock, and are known to occur in a variety of physiological processes. We report results on the circadian rhythm of heart rate observed using a wrist-worn wearable device (Fitbit), consisting of over 17,000 individuals over the course of 30 days. We obtain an underlying heart rate circadian rhythm from the time series heart rate by modeling the circadian rhythm as a sum over the first two Fourier harmonics.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pune - 411008, India.
Organic-inorganic hybrid ferroelectric compounds of the halobismuthate family have emerged as a focal point of research owing to their reduced toxicity and distinctive optical characteristics. This study presents a novel ammonium hybrid perovskite, [BPMBDMA]·[Bi2Br9], which exhibits both ferro- and piezoelectric properties and crystallizes in the polar noncentrosymmetric 2 space group. The nonlinear optical (NLO) activity of [BPMBDMA]·[Bi2Br9] was corroborated through second harmonic generation measurements evidencing its noncentrosymmetric structure, which was further substantiated by piezoresponse force microscopy analyses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!