Transition-metal phosphides have recently been identified as low-cost and efficient electrocatalysts that are highly active for the hydrogen evolution reaction. Unfortunately, to achieve a controlled phosphidation of nonprecious metals toward a desired nanostructure of metal phosphides, the synthetic processes usually turned complicated, high-cost, and even dangerous due to the reaction chemistry related to different phosphorus sources. It becomes even more challenging when considering the integration of those active metal phosphides with the structural engineering of their conductive matrix toward a favorable architecture for optimized catalytic performance. Herein, we identified that the biomass itself could act as an effective synthetic platform for the construction of supported metal phosphides by recovering its inner phosphorus upon reacting with transition-metals ions, forming well-dispersed, highly active nanoparticles of metal phosphides incorporated in the nanoporous carbon matrix, which promised high catalytic activity in the hydrogen evolution reaction. Our synthetic protocol not only provides a simple and effective strategy for the construction of a large variety of highly active nanoparticles of metal phosphides but also envisions new perspectives on an integrated utilization of the essential ingredients, particularly phosphorus, together with the innate architecture of the existing biomass for the creation of functional nanomaterials toward sustainable energy development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.7b06123 | DOI Listing |
J Colloid Interface Sci
January 2025
State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 PR China. Electronic address:
High-entropy phosphides (HEPs) have garnered increasing interest as innovative electrocatalysts for water splitting, highlighted by their distinctive catalytic activity, elemental synergy, and tunable electronic configuration. Herein, a novel electrode comprising CoNiCuZnFeP nanocubes with rich phosphorus vacancies was fabricated through coprecipitation and phosphorization two-step method. The synergistic interaction among metal elements and the modulation of the electronic configuration by phosphorus vacancies augmentation enhance the catalytic performance for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER).
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001 Henan, China; National Key Laboratory of Coking Coal Green Process Research, Zhengzhou University, Zhengzhou 450001, Henan, China. Electronic address:
Hydrogen production via electrocatalytic water splitting has garnered significant attention, due to the growing demand for clean and renewable energy. However, achieving low overpotential and long-term stability of water splitting catalysts at high current densities remains a major challenge. Herein, a CoP@CoNi layered double hydroxide (LDH) electrode was synthesized via a two-step electrodeposition process, demonstrating oxygen evolution reaction, with an overpotential (ƞ) of 373 mV and a Tafel slope of 64.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemistry, American University of Beirut, Beirut, 110236, Lebanon.
Enhancing the rate of the oxygen evolution reaction (OER) by doping Ni-based electrocatalysts with guest metals other than Fe (V in this work) and the stability of the metal site should be assessed independent of Fe traces and in relation to the guest metal activity in solution. We examined OER catalysis and its sustainability at vanadium-doped nickel phosphide (NiP-V) independent of the role of Fe traces in alkaline. V was included in NiP by codeposition at cathodic bias (termed V) or postdeposition during the phosphide-to-hydroxide surface transformation at anodic bias in alkaline spiked with VCl (termed V).
View Article and Find Full Text PDFDalton Trans
January 2025
State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
The design and synthesis of new mid-infrared functional crystals with novel structures and excellent properties is a hot topic in the materials science research field. Different from the traditional mid-far infrared crystal systems, such as chalcogenides and phosphides, a recently developed heavy metal oxyhalide, with a wide bandgap and transmittance range, is a very promising mid-infrared crystal material research system. Herein, the first case of a salt-inclusion compound in lead oxyhalides, CsPbOI (3PbOI·2CsI), has been synthesized by a high-temperature solution method.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!