A novel method for rapid and quantitative mechanical assessment of soft tissue for diagnostic purposes: A computational study.

Int J Numer Method Biomed Eng

Institute of Mechanical, Process, and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.

Published: February 2018

Biological tissues often experience drastic changes in their microstructure due to their pathophysiological conditions. Such microstructural changes could result in variations in mechanical properties, which can be used in diagnosing or monitoring a wide range of diseases, most notably cancer. This paves the avenue for non-invasive diagnosis by instrumented palpation although challenges remain in quantitatively assessing the amount of diseased tissue by means of mechanical characterization. This paper presents a framework for tissue diagnosis using a quantitative and efficient estimation of the fractions of cancerous and non-cancerous tissue without a priori knowledge of tissue microstructure. First, the sample is tested in a creep or stress relaxation experiment, and the behavior is characterized using a single term Prony series. A rule of mixtures, which relates tumor fraction to the apparent mechanical properties, is then obtained by minimizing the difference between strain energy of a heterogeneous system and an equivalent homogeneous one. Finally, the percentage of each tissue constituent is predicted by comparing the observed relaxation time with that calculated from the rule of mixtures. The proposed methodology is assessed using models reconstructed from histological samples and magnetic resonance imaging of prostate. Results show that estimation of cancerous tissue fraction can be obtained with a maximum error of 12% when samples of different sizes, geometries, and tumor fractions are presented. The proposed framework has the potential to be applied to a wide range of diseases such as rectal polyps, cirrhosis, or breast and prostate cancer whose current primary diagnosis remains qualitative.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5836875PMC
http://dx.doi.org/10.1002/cnm.2917DOI Listing

Publication Analysis

Top Keywords

mechanical properties
8
wide range
8
range diseases
8
rule mixtures
8
tissue
7
novel method
4
method rapid
4
rapid quantitative
4
mechanical
4
quantitative mechanical
4

Similar Publications

Two-dimensional inverse double sandwich CoB: strain-induced non-magnetic to ferromagnetic transition.

Phys Chem Chem Phys

January 2025

Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

A full-scale structural search was performed using density functional theory calculations and a universal structural prediction evolutionary algorithm. This produced a lowest energy two-dimensional (2D) CoB structure. The CoB-1 global minimum structure has unusual inverse double sandwich features.

View Article and Find Full Text PDF

Nowadays, much attention is paid to the development of high-performance and multifunctional materials, but it is still a great challenge to obtain polymer materials with high mechanical properties, high self-healing properties, and multifunctionality in one. Herein, an innovative strategy is proposed to obtain a satisfactory waterborne polyurethane (PMWPU-Bx) by in situ anchoring 3-aminophenylboronic acid (3-APBA) in a pyrene-capped waterborne polyurethane (PMWPU) via supramolecular interactions. The multiple functional sites inherent in 3-APBA can produce supramolecular interactions with groups on PMWPU, promoting the aggregation of hard domains in the polymer network, which confers the PMWPU-Bx strength (7.

View Article and Find Full Text PDF

Double-Dynamic-Bond Cross-Linked Hydrogel Adhesive with Cohesion-Adhesion Enhancement for Emergency Tissue Closure and Infected Wound Healing.

Adv Healthc Mater

January 2025

College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.

The hydrogel adhesives with strong tissue adhesion and biological characteristics adhm202404447are urgently needed for injury sealing and tissue repair. However, the negative correlation between tissue adhesion and the mechanical strength poses a challenge for their practical application. Herein, a bio-inspired cohesive enhancement strategy is developed to prepare the hydrogel adhesive with simultaneously enhanced mechanical strength and tissue adhesion.

View Article and Find Full Text PDF

Contrasting Mechanochromic Luminescence of Enantiopure and Racemic Pyrenylprolinamides: Elucidating Solid-State Excimer Orientation by Circularly Polarized Luminescence.

Angew Chem Int Ed Engl

January 2025

Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.

Circularly polarized luminescence (CPL) and mechanochromic luminescence (MCL) have independently made substantial progress in recent years. However, the exploration of MCL in solid-state CPL materials, which holds practical significance, is still in its infancy. Herein, we report the MCL properties of readily accessible chiral pyrenylprolinamides bearing tert-butoxycarbonyl (Boc) or 2,2,2-trichloroethoxycarbonyl (Troc) groups.

View Article and Find Full Text PDF

A Baicalin-Based Functional Polymer in Dynamic Reversible Networks Alleviates Osteoarthritis by Cellular Interactions.

Adv Sci (Weinh)

January 2025

Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, Guangdong, 510630, China.

Osteoarthritis (OA) is increasingly recognized as a whole-organ disease predominantly affecting the elderly, characterized by typical alterations in subchondral bone and cartilage, along with recurrent synovial inflammation. Despite the availability of various therapeutics and medications, a complete resolution of OA remains elusive. In this study, novel functional hydrogels are developed by integrating natural bioactive molecules for OA treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!