Evidence of microbial rhodopsins in Antarctic Dry Valley edaphic systems.

Environ Microbiol

Centre of Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria, South Africa.

Published: September 2017

Microorganisms able to synthesize rhodopsins have the capacity to translocate ions through their membranes, using solar energy to generate a proton motive force. Rhodopsins are the most abundant phototrophic proteins in oceanic surface waters and are key constituents in marine bacterial ecology. However, it remains unclear how rhodopsins are used in most microorganisms. Despite their abundance in marine and fresh-water systems, the presence of functional rhodopsin systems in edaphic habitats has never been reported. Here, we show the presence of several new putative H , Na and Cl pumping rhodopsins identified by metagenomic analysis of Antarctic desert hypolithic communities. Reconstruction of two Proteobacteria genomes harboring xanthorhodopsin-like proteins and one Bacteroidetes genome with a Na-pumping-like rhodopsin indicated that these bacteria were aerobic heterotrophs possessing the apparent capacity for the functional expression of rhodopsins. The existence of these protein systems in hypolithic bacteria expands the known role of rhodopsins to include terrestrial environments and suggests a possible predominant function as heterotrophic energy supply proteins, a feasible microbial adaptation to the harsh conditions prevalent in Antarctic edaphic systems.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1462-2920.13877DOI Listing

Publication Analysis

Top Keywords

edaphic systems
8
rhodopsins
7
systems
5
evidence microbial
4
microbial rhodopsins
4
rhodopsins antarctic
4
antarctic dry
4
dry valley
4
valley edaphic
4
systems microorganisms
4

Similar Publications

Wildfire ashes: evaluating threats on the Pantanal wetland reserve (Mato Grosso, Brazil) using ecotoxicological tests.

Environ Sci Pollut Res Int

January 2025

Program in Biodiversity and Nature Conservation (UFJF), Institute of Biological Sciences (ICB), Federal University of Juiz de Fora (UFJF), University Campus, Martelos, Juiz de Fora, Minas Gerais, CEP, 36036-900, Brazil.

In 2020, the largest continuous wetland area on the planet, the Brazilian Pantanal, experienced an unprecedented fire that affected the entire ecosystem. Our goal was to elucidate the effects of ash presence following the fire events. We quantified the impact of ashes, collected in four Conservation Units, on soil, water, and atmosphere.

View Article and Find Full Text PDF

Microplastic effects on soil nitrogen cycling enzymes: A global meta-analysis of environmental and edaphic factors.

J Hazard Mater

November 2024

Grasslands and Sustainable Farming, Production Systems Unit, Natural Resources Institute Finland, Halolantie 31A, Maaninka, Kuopio FI-71750, Finland. Electronic address:

Article Synopsis
  • Microplastic accumulation in soil ecosystems raises environmental issues, particularly affecting nitrogen cycling and overall ecosystem health.
  • A meta-analysis of 147 studies revealed that exposure to microplastics significantly increased the activities of specific nitrogen-acquisition enzymes in soil, particularly urease and leucine aminopeptidase, but not N-acetyl-β-D-glucosaminidase.
  • The impact of microplastics varied based on their type and characteristics, as well as environmental conditions and soil properties, indicating the need for tailored management and policy strategies to address microplastic pollution in soil.
View Article and Find Full Text PDF

Functional redundancy buffers the effect of poly-extreme environmental conditions on southern African dryland soil microbial communities.

FEMS Microbiol Ecol

November 2024

Extreme Ecosystem Microbiomics & Ecogenomics (E²ME) Laboratory, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile.

Drylands' poly-extreme conditions limit edaphic microbial diversity and functionality. Furthermore, climate change exacerbates soil desiccation and salinity in most drylands. To better understand the potential effects of these changes on dryland microbial communities, we evaluated their taxonomic and functional diversities in two Southern African dryland soils with contrasting aridity and salinity.

View Article and Find Full Text PDF

Global Distributions of Reactive Iron and Aluminum Influence the Spatial Variation of Soil Organic Carbon.

Glob Chang Biol

November 2024

School of Ecology and Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin, Heilongjiang, China.

Organic carbon persistence in soils is predominantly controlled by physical accessibility rather than by its biochemical recalcitrance. Understanding the regulation of soil iron (Fe) and aluminum (Al) (hydr)oxides, playing a dominant role in mineral protection, on soil organic carbon (SOC) would increase the reliable projections of the feedback of terrestrial ecosystems to global warming. Here, we conducted a continental-scale survey in China (341 sites) and a global synthesis (6786 observations) to reveal the global distributions of Fe/Al (hydr)oxides and their effects on SOC storage in terrestrial ecosystems.

View Article and Find Full Text PDF

The root system harbours complex bacterial communities, which are critical for plant growth and health. Significant differences exist between bacterial communities in the root compartments; however, limited reports have explored their phylogenetic composition and niche conservatism in the root system of sorghum. We used the sorghum Hongyingzi cultivar as test plant, and applied 16S rRNA high-throughput sequencing and various statistical approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!