Comparative landscape genetics studies can provide key information to implement cost-effective conservation measures favouring a broad set of taxa. These studies are scarce, particularly in Mediterranean areas, which include diverse but threatened biological communities. Here, we focus on Mediterranean wetlands in central Iberia and perform a multi-level, comparative study of two endemic pond-breeding amphibians, a salamander (Pleurodeles waltl) and a toad (Pelobates cultripes). We genotyped 411 salamanders from 20 populations and 306 toads from 16 populations at 18 and 16 microsatellite loci, respectively, and identified major factors associated with population connectivity through the analysis of three sets of variables potentially affecting gene flow at increasingly finer levels of spatial resolution. Topographic, land use/cover, and remotely sensed vegetation/moisture indices were used to derive optimized resistance surfaces for the two species. We found contrasting patterns of genetic structure, with stronger, finer scale genetic differentiation in Pleurodeles waltl, and notable differences in the role of fine-scale patterns of heterogeneity in vegetation cover and water content in shaping patterns of regional genetic structure in the two species. Overall, our results suggest a positive role of structural heterogeneity in population connectivity in pond-breeding amphibians, with habitat patches of Mediterranean scrubland and open oak woodlands ("dehesas") facilitating gene flow. Our study highlights the usefulness of remotely sensed continuous variables of land cover, vegetation and water content (e.g., NDVI, NDMI) in conservation-oriented studies aimed at identifying major drivers of population connectivity.

Download full-text PDF

Source
http://dx.doi.org/10.1111/mec.14272DOI Listing

Publication Analysis

Top Keywords

pond-breeding amphibians
12
gene flow
12
population connectivity
12
comparative landscape
8
landscape genetics
8
positive role
8
role structural
8
structural heterogeneity
8
pleurodeles waltl
8
remotely sensed
8

Similar Publications

Amphibians are among the most threatened vertebrate taxa globally. Their global decline necessitates effective conservation actions to bolster populations across both the larval and adult stages. Constructing man-made ponds is one action proven to enhance reproduction in pond-breeding amphibians.

View Article and Find Full Text PDF

Management of vulnerable amphibian populations requires a better understanding of the habitat factors that will make the greatest difference in their preservation. We set out to develop a predictive model of amphibian abundance based on habitat characteristics that may influence their survival and persistence. Our study system was the Sonoma County California tiger salamander (Ambystoma californiense; SCTS), an amphibian threatened by habitat loss and fragmentation.

View Article and Find Full Text PDF

As reproduction phenologies shift with climate change, populations can experience intraspecific priority effects, wherein early hatching cohorts experience an advantage over late-hatching cohorts, resulting in altered demography. Our study objective was to identify how variation in egg hatching phenology alters intraspecific interactions in small-mouthed salamanders, Ambystoma texanum. We addressed two research questions: (Q1) How are demographic responses altered by variation in the temporal duration of hatching between cohorts, and (Q2) How does the seasonality of hatching delays affect demographic responses? We manipulated hatching phenologies of A.

View Article and Find Full Text PDF

The success of ponds constructed to restore ecological infrastructure for pond-breeding amphibians and benefit aquatic biodiversity depends on where and how they are built. We studied effects of pond and landscape characteristics, including connectivity, on metapopulation dynamics of 12 amphibian species in Switzerland. To understand the determinants of long-term occupancy (here summarized as incidence), environmental effects on both colonization and persistence should be considered.

View Article and Find Full Text PDF

Connectivity is essential for the maintenance of genetic diversity and stability of wildlife populations. Drought and changing precipitation regimes have caused natural aquatic amphibian breeding habitats to disappear or become isolated and have led to the replacement of natural surface water with artificial livestock water tanks. Terrestrial movement is the only means of responding to aquatic threats in arid landscapes and to allow population connectivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!