Hemorrhagic stroke is a devastating clinical event with no effective medical treatment. Neuroinflammation, which follows a hemorrhagic stroke, is an important element that involves both acute brain injury and subsequent brain rehabilitation. Therefore, delineating the key inflammatory mediators and deciphering their pathophysiological roles in hemorrhagic strokes is of great importance in the development of novel therapeutic targets for this disease. The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is a multi-protein complex that is localized within the cytoplasm. This NOD-like receptor orchestrates innate immune responses to pathogenic organisms and cell stress through the activation of caspase-1 and the maturation of the proinflammatory cytokines such as interleukin-1β (IL-1β) and IL-18. Mounting evidence has demonstrated that when the NLRP3 inflammasome is activated, it exerts harmful effects on brain tissue after a hemorrhagic stroke. This review article summarizes the current knowledge regarding the role and the underlying mechanisms of the NLRP3 inflammasome in the pathophysiological processes of hemorrhagic strokes. A better understanding of the function and regulation of the NLRP3 inflammasome in hemorrhagic strokes will provide clues for devising novel therapeutic strategies to fight this disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10571-017-0526-9 | DOI Listing |
J Neurosci
January 2025
University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL 33136.
The opioid epidemic endangers not only public health but also social and economic welfare. Growing clinical evidence indicates that chronic use of prescription opioids may contribute to an elevated risk of ischemic stroke and negatively impact post-stroke recovery. In addition, NLRP3 inflammasome activation has been related to several cerebrovascular diseases, including ischemic stroke.
View Article and Find Full Text PDFSci Immunol
January 2025
Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
The NLRP3 inflammasome plays a critical role in innate immunity and inflammatory diseases. NIMA-related kinase 7 (NEK7) is essential for inflammasome activation, and its interaction with NLRP3 is enhanced by K efflux. However, the mechanism by which K efflux promotes this interaction remains unknown.
View Article and Find Full Text PDFClin Rev Allergy Immunol
December 2024
Division of Allergy and Clinical Immunology, The Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Room 3B.71, Baltimore, MD, 21224, USA.
Asthma is a chronic airway inflammatory disease that affects millions globally. Although glucocorticoids are a mainstay of asthma treatment, a subset of patients show resistance to these therapies, resulting in poor disease control and increased morbidity. The complex mechanisms underlying steroid-resistant asthma (SRA) involve Th1 and Th17 lymphocyte activity, neutrophil recruitment, and NLRP3 inflammasome activation.
View Article and Find Full Text PDFNeurochem Res
January 2025
Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.
Depression is a common and complex neuropsychiatric disorder affecting people of all ages worldwide, associated with high rates of relapse and disability. Neohesperidin (NEO) is a dietary flavonoid with applications in therapeutics; however, its effects on depressive-like behavior remain unknown. Here, we evaluated the effects of NEO on depressive-like behavior induced by chronic and unpredictable mild stress (CUMS).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Texas Medical Branch, Galveston, TX, USA.
Background: The misfolding and aggregation of the tau protein into neurofibrillary tangles constitute a central feature of tauopathies. Traumatic brain injury (TBI) has emerged as a potential risk factor, triggering the onset and progression of tauopathies. Our previous research revealed distinct polymorphisms in soluble tau oligomers originating from single versus repetitive mild TBIs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!