Electron-Poor, Fluoro-Containing Arylboronic Acids as Efficient Coupling Partners for Bis(1,5-cyclooctadiene)nickel(0)/Tricyclohexylphosphine-Catalyzed Cross-Coupling Reactions of Aryl Arenesulfonates.

Adv Synth Catal

Department of Chemistry, College of Staten Island of the City University of New York, Staten Island, New York, 10314 and the Ph.D. Program in Chemistry, the Graduate Center of the City University of New York, New York, NY 10016, United States.

Published: June 2016

The use of electron-poor, fluoro-containing arylboronic acids as general coupling partners for nickel(0) /tricyclohexylphosphine-catalyzed cross-coupling of aryl arenesulfonates is described. Electron-poor fluoro-containing arylboronic acids were found to react, faster than electron-rich/neutral arylboronic acids, with (4-methoxyphenyl)(4-methylbenzenesulfonato-κ)bis(tricyclohexylphosphine)nickel. Bis(1,5-cyclooctadiene)nickel(0)/tricyclohexylphosphine, (4-methoxyphenyl)(4-methylbenzenesulfonato-κ)bis(tricyclohexylpho sphine)nickel and bis(tricyclohexylphosphine)nickel (II) bromide were all found to be efficient catalysts/catalyst precursors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526642PMC
http://dx.doi.org/10.1002/adsc.201600205DOI Listing

Publication Analysis

Top Keywords

arylboronic acids
16
electron-poor fluoro-containing
12
fluoro-containing arylboronic
12
coupling partners
8
aryl arenesulfonates
8
arylboronic
4
acids
4
acids efficient
4
efficient coupling
4
partners bis15-cyclooctadienenickel0/tricyclohexylphosphine-catalyzed
4

Similar Publications

Nickel-Catalyzed Cyclization/Carbonylation Reaction of -Allylbromoacetamides with Arylboronic Acids toward 2-Pyrrolidinones.

Org Lett

January 2025

Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, Liaoning, People's Republic of China.

A straightforward and efficient nickel-catalyzed cyclization/carbonylation transformation of -allylbromoacetamides toward the synthesis of 2-pyrrolidinone derivatives has been developed with arylboronic acids as the reaction partner. This transformation proceeds through a sequential single-electron-transfer pathway via 5-- cyclization and carbonyl insertion steps, furnishing a variety of 2-pyrrolidinone derivatives in good yields. Various useful functional groups were well tolerated.

View Article and Find Full Text PDF

2-Fluorobenzofurans underwent efficient nickel-catalyzed coupling with arylboronic acids through the activation of aromatic C-F bonds. This method allowed us to successfully synthesize a range of 2-arylbenzofurans with various substituents. The reaction, which proceeded under mild conditions, involved β-fluorine elimination from nickelacyclopropanes formed by the interaction of 2-fluorobenzofurans with zero-valent nickel species.

View Article and Find Full Text PDF

Cross-coupling reactions are indispensable for the construction of complex molecular scaffolds. In this work, we developed a sustainable methodology for the cross-coupling reaction of arene thianthrenium salts with aryl boronic acids, which can be effectively realized under mechanochemical conditions. Liquid-assisted grinding (LAG) enabled fast and high-yielding synthesis of a range of biaryls via Pd/RuPhos-catalyzed cross-coupling.

View Article and Find Full Text PDF

Objective: In search of efficient anticancer agents, we aimed at the design and synthesis of a library of tetrasubstituted alkenes. These are structural analogues of tamoxifen, one of the widely used anticancer therapeutics.

Methods: Our small organic compound library was prepared via a chemical synthesis in the solution using the Larock three-component coupling reaction, which is known to tolerate diverse functional groups.

View Article and Find Full Text PDF

Regio- and Enantioselective Rhodium-Catalyzed Allylic Arylation of Racemic Allylic Carbonates with Arylboronic Acids.

Angew Chem Int Ed Engl

January 2025

New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China.

Rhodium-catalyzed regio- and enantioselective allylic arylation of racemic alkyl- and aryl- substituted allylic carbonates with arylboronic acids using commercially available BIBOP ligand is reported. This reaction proceeds at room temperature without base or other additive to deliver allylic arylation products in excellent yields, regio- and enantioselectivity (up to 95 % yield, >20 : 1 b/l, >99 % ee). Rh/BIBOP is disclosed as an efficient catalytic system for allylic substitution reaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!