Thiazole-4-carboxamide adenine dinucleotide (TAD), the active metabolite of the oncolytic C-nucleoside tiazofurin (TR), is susceptible to phosphodiesteratic breakdown by a unique phosphodiesterase present at high levels in TR-resistant tumors. Since accumulation of TAD, as regulated by its synthetic and degradative enzymes, appears to be an important determinant for sensitivity to the drug, a series of hydrolytically resistant phosphonate analogues of TAD were synthesized with the intent of producing more stable compounds with an ability to inhibit IMP dehydrogenase equivalent to TAD itself. Isosteric phosphonic acid analogues of TR and adenosine nucleotides were coupled with activated forms of AMP and TR monophosphate to give dinucleotides 2 and 4. Coupling of protected adenosine 5'-(alpha, beta-methylene)diphosphate with isopropylidene-TR in the presence of DCC afforded compound 3 after deprotection. These compounds are more resistant than TAD toward hydrolysis and still retain potent activity against IMP dehydrogenase in vitro. beta-Methylene-TAD (3), the most stable of the TAD phosphonate analogues, produced a depletion of guanine nucleotide pools in an experimentally induced TR-resistant P388 tumor variant that was superior to that obtained with TR in the corresponding sensitive line.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm00159a027DOI Listing

Publication Analysis

Top Keywords

thiazole-4-carboxamide adenine
8
adenine dinucleotide
8
dinucleotide tad
8
phosphonate analogues
8
imp dehydrogenase
8
tad
7
analogues
4
tad analogues
4
analogues stable
4
stable phosphodiesterase
4

Similar Publications

Colorectal cancer cells exhibit limited cytotoxicity towards Tiazofurin, a pro-drug metabolized by cytosolic nicotinamide mononucleotide adenylyltransferase2 (NMNAT2) to thiazole-4-carboxamide adenine dinucleotide, a potent inhibitor of inosine 5'-monophosphate dehydrogenase required for cellular guanylate synthesis. We tested the hypothesis that colorectal cancer cells that exhibit low levels of NMNAT2 and are refractory to Tiazofurin can be rendered sensitive to Tiazofurin by overexpressing NMNAT2. Transfection of hNMNAT2 resulted in a six- and threefold cytoplasmic overexpression in Caco2 and HT29 cell lines correlating with Tiazofurin-induced enhanced cell-kill.

View Article and Find Full Text PDF

Clostridium perfringens iota-toxin (Ia) mono-ADP ribosylates Arg177 of actin, leading to cytoskeletal disorganization and cell death. To fully understand the reaction mechanism of arginine-specific mono-ADP ribosyl transferase, the structure of the toxin-substrate protein complex must be characterized. Recently, we solved the crystal structure of Ia in complex with actin and the nonhydrolyzable NAD(+) analog βTAD (thiazole-4-carboxamide adenine dinucleotide); however, the structures of the NAD(+)-bound form (NAD(+)-Ia-actin) and the ADP ribosylated form [Ia-ADP ribosylated (ADPR)-actin] remain unclear.

View Article and Find Full Text PDF

Structural basis of actin recognition and arginine ADP-ribosylation by Clostridium perfringens iota-toxin.

Proc Natl Acad Sci U S A

May 2008

Institute for Health Sciences and Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Yamashiro-cho, Tokushima 770-8514, Japan.

The ADP-ribosylating toxins (ADPRTs) produced by pathogenic bacteria modify intracellular protein and affect eukaryotic cell function. Actin-specific ADPRTs (including Clostridium perfringens iota-toxin and Clostridium botulinum C2 toxin) ADP-ribosylate G-actin at Arg-177, leading to disorganization of the cytoskeleton and cell death. Although the structures of many actin-specific ADPRTs are available, the mechanisms underlying actin recognition and selective ADP-ribosylation of Arg-177 remain unknown.

View Article and Find Full Text PDF

Thiazole-4-carboxamide adenine dinucleotide (TAD) analogues T-2'-MeAD (1) and T-3'-MeAD (2) containing, respectively, a methyl group at the ribose 2'-C-, and 3'-C-position of the adenosine moiety, were prepared as potential selective human inosine monophosphate dehydrogenase (IMPDH) type II inhibitors. The synthesis of heterodinucleotides was carried out by CDI-catalyzed coupling reaction of unprotected 2'-C-methyl- or 3'-C-methyl-adenosine 5'-monophosphate with 2',3'-O-isopropylidene-tiazofurin 5'-monophosphate, and then deisopropylidenation. Biological evaluation of dinucleotides 1 and 2 as inhibitors of recombinant human IMPDH type I and type II resulted in a good activity.

View Article and Find Full Text PDF

A rapid and sensitive HPLC-RP method for simultaneous determination of tiazofurin, its 5'-O acetyl and benzoyl esters and their active metabolite thiazole-4-carboxamide adenine dinucleotide was developed and validated. The method allowed determination and quantification of nanomolar quantities of these substances in cell extracts of treated cells, and was also used in kinetic studies of cellular uptake of tiazofurin and its esters from the cultivation medium. Separation of the analyzed substances from unidentified peaks from both biological materials was achieved by gradient elution, thus reducing the possibility of interference.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!