We determined how Li doping affects the Ni/Mn ordering in high-voltage spinel LiNiMnO(LNMO) by using neutron diffraction, TEM image, electrochemical measurements, and NMR data. The doped Li occupies empty octahedral interstitials (16c site) before the ordering transition, and can move to normal octahedral sites (16d (4b) site) after the transition. This movement strongly affects the Ni/Mn ordering transition because Li at 16c sites blocks the ordering transition pathway and Li at 16d (4b) sites affects electrostatic interactions with transition metals. As a result, Li doping increases in the Ni/Mn disordering without the effect of Mn ions even though the Li-doped LNMO undergoes order-disorder transition at 700 °C. Li doping can control the amount of Ni/Mn disordering in the spinel without the negative effect of Mn ions on the electrochemical property.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5532243 | PMC |
http://dx.doi.org/10.1038/s41598-017-07139-2 | DOI Listing |
ASAP1 is a multidomain Arf GTPase-activating protein (ArfGAP) that catalyzes GTP hydrolysis on the small GTPase Arf1 and is implicated in cancer progression. The PH domain of ASAP1 enhances its activity greater than 7 orders of magnitude but the underlying mechanisms remain poorly understood. Here, we combined Nuclear Magnetic Resonance (NMR), Molecular Dynamic (MD) simulations and mathematical modeling of functional data to build a comprehensive structural-mechanistic model of the complex of Arf1 and the ASAP1 PH domain on a membrane surface.
View Article and Find Full Text PDFSci Rep
January 2025
Innovation Institute for Sustainable Maritime Architecture Research and Technology, Qingdao University of Technology, Qingdao, 266033, People's Republic of China.
During the hot summer months, the significant temperature disparity between outdoor and indoor air-conditioned spaces can lead to thermal discomfort and pose a potential health risk. Transition areas such as corridors and elevator lobbies, serving as intermediary zones connecting indoors and outdoors, have been found effective in mitigating this thermal discomfort. In this study, three different temperatures (25 °C-case 1, 27 °C-case 2, and 29 °C-case 3) were employed to investigate the dynamic physiological regulation and thermal perception response of individuals when transitioning from an outdoor environment into an indoor neutral room through a transition space.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physical Education, States University of Pará, Pará, Brazil.
It is well known that elite athletes of specific ethnicities and/or nationalities dominate certain sports disciplines (e.g., East Africans in marathon running).
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
School of Materials Science, Indian Association for the Cultivation of Science, Calcutta 700 032, Kolkata, West Bengal, 700032, INDIA.
An exotic quantum mechanical ground state, i.e. the nonmagnetic= 0 state, has been predicted for higher transition metal tsystems, due to the influence of strong spin-orbit coupling (SOC) or in other words, due to unquenched orbital moment contribution.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, No.8 South Third Street, Zhongguancun, Beijing, 100190, CHINA.
We systematically investigate the magnetization and thermodynamic responses associated with antiferromagnetic (AFM) transitions in single crystals of the magnetic semiconductor Eu3InAs3. The linear thermal expansion measurements around the AFM transition temperatures, TN1 and TN2, indicate an expansion along the a axis and contraction along the b and c axes. The calculated ∆V/V(T) shows a continuous change at TN, indicating a second-order magnetic phase transition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!