Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Percutaneous coronary intervention has been widely used in the treatment of ischemic heart disease, but vascular restenosis is a main limitation of percutaneous coronary intervention. Our previous work reported that caveolin-1 had a key functional role in intimal hyperplasia, whereas whether Cavin-1 (another important caveolae-related protein) was involved is still unknown. Therefore, we will investigate the effect of Cavin-1 on neointimal formation.
Methods And Results: Balloon injury markedly reduced Cavin-1 protein and enhanced ubiquitin protein expression accompanied with neointimal hyperplasia in injured carotid arteries, whereas Cavin-1 mRNA had no change. In cultured vascular smooth muscle cells (VSMCs), Cavin-1 was downregulated after inhibition of protein synthesis by cycloheximide, which was distinctly prevented by pretreatment with proteasome inhibitor MG132 but not by lysosomal inhibitor chloroquine, suggesting that proteasomal degradation resulted in Cavin-1 downregulation. Knockdown of Cavin-1 by local injection of Cavin-1 short hairpin RNA (shRNA) into balloon-injured carotid arteries in vivo promoted neointimal formation. In addition, inhibition or overexpression of Cavin-1 in cultured VSMCs in vitro prompted or suppressed VSMC proliferation and migration via increasing or decreasing extracellular signal-regulated kinase phosphorylation and matrix-degrading metalloproteinases-9 activity, respectively. However, under basic conditions, the effect of Cavin-1 on VSMC migration was stronger than on proliferation. Moreover, our results indicated that Cavin-1 regulated caveolin-1 expression via lysosomal degradation pathway.
Conclusions: Our study revealed the role and the mechanisms of Cavin-1 downregulation in neointimal formation by promoting VSMC proliferation, migration, and synchronously enhancing caveolin-1 lysosomal degradation. Cavin-1 may be a potential therapeutic target for the treatment of postinjury vascular remodeling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5586430 | PMC |
http://dx.doi.org/10.1161/JAHA.117.005754 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!