Joint amplitude MEMS based measurement platform for low cost and high accessibility telerehabilitation: Elbow case study.

J Bodyw Mov Ther

Programa de Doctorado en Ciencia Aplicada, Universidad Antonio Nariño, Bogotá, Colombia.

Published: July 2017

This paper, presents an inertial and magnetic sensor based technological platform, intended for articular amplitude monitoring and telerehabilitation processes considering an efficient cost/technical considerations compromise. The particularities of our platform offer possibilities of a high social impact by making telerehabilitation accessible to large population sectors in marginal socio-economic sectors, especially in underdeveloped countries where, in contrast to developed countries, specialists are scarce and high technology is not available or inexistent. This platform integrates high resolution low cost inertial and magnetic sensors with adequate user interfaces and communication protocols to perform a diagnostic service through the web, or other available communication networks. Elbow amplitude information is generated by sensors and then transferred to a computing device with adequate interfaces to make it accessible to inexperienced personnel, providing a high social value at a low cost. Experimental methodology includes two different sets of tests: the first one uses flexion - extension movements on a robotic arm to validate our platform (IMOCAP) articular amplitude measurements, against the robotic positioning system. The second set of tests was carried out on human patients to test IMOCAP in real operational conditions; results were validated with an optical positioning system. This paper presents experimental results showing the platform applicability to telerehabilitation processes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbmt.2016.08.016DOI Listing

Publication Analysis

Top Keywords

low cost
12
paper presents
8
inertial magnetic
8
articular amplitude
8
telerehabilitation processes
8
high social
8
positioning system
8
platform
6
high
5
joint amplitude
4

Similar Publications

Ultrasensitive Detection of Circulating Plasma Cells Using Surface-Enhanced Raman Spectroscopy and Machine Learning for Multiple Myeloma Monitoring.

Anal Chem

January 2025

Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian 350117, China.

Multiple myeloma is a hematologic malignancy characterized by the proliferation of abnormal plasma cells in the bone marrow. Despite therapeutic advancements, there remains a critical need for reliable, noninvasive methods to monitor multiple myeloma. Circulating plasma cells (CPCs) in peripheral blood are robust and independent prognostic markers, but their detection is challenging due to their low abundance.

View Article and Find Full Text PDF

Purpose: Financial toxicity (FT) has been linked to higher symptom burden and poorer clinical outcomes for patients with cancer. Despite the availability of validated tools to measure FT, a simple screen remains an unmet need. We evaluated item 12 ("My illness has been a financial hardship to my family and me") of the COmprehensive Score for Financial Toxicity (COST) measure as a single-item FT screening measure.

View Article and Find Full Text PDF

Single-crystal Au(111), renowned for its chemically inert surface, long-range "herringbone" reconstruction, and high electrical conductivity, has long served as an exemplary template in diverse fields, , crystal epitaxy, electronics, and electrocatalysis. However, commercial Au(111) products are high-priced and limited to centimeter sizes, largely restricting their broad applications. Herein, a low-cost, high-reproducible method is developed to produce 4 in.

View Article and Find Full Text PDF

Background: Virtual patients (VPs) are computer screen-based simulations of patient-clinician encounters. VP use is limited by cost and low scalability.

Objective: Show proof-of-concept that VPs powered by large language models (LLMs) generate authentic dialogs, accurate representations of patient preferences, and personalized feedback on clinical performance; and explore LLMs for rating dialog and feedback quality.

View Article and Find Full Text PDF

Background: Each year, millions of people in low-and middle-income countries such as Nigeria are forced into poverty and financial ruin due to out-of-pocket (OOP) healthcare expenses. Our study assessed the prevalence and determinants of Catastrophic Healthcare Expenditure (CHE) experienced by households in Lagos, Nigeria.

Methods: A descriptive community-based cross-sectional survey was conducted on 2492 households in Lagos from December 2022 to March 2023 in 4 Local Government Areas (LGAs) using a multistage sampling technique.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!