Biosurfactants or microbial surfactants are surface-active biomolecules that are produced by a variety of microorganisms. Biodegradability and low toxicity have led to the intensification of scientific studies on a wide range of industrial applications for biosurfactants in the field of environmental bioremediation as well as the petroleum industry and enhanced oil recovery. However, the major issues in biosurfactant production are high production cost and low yield. Improving the bioindustrial production processes relies on many strategies, such as the use of cheap raw materials, the optimization of medium-culture conditions, and selecting hyperproducing strains. The present work aims to obtain a mutant with higher biosurfactant production through applying mutagenesis on SPB1 using a combination of UV irradiation and nitrous acid treatment. Following mutagenesis and screening on blood agar and subsequent formation of halos, the mutated strains were examined for emulsifying activity of their culture broth. A mutant designated M2 was selected as it produced biosurfactant at twice higher concentration than the parent strain. The potential of this biosurfactant for industrial uses was shown by studying its stability to environmental stresses such as pH and temperature and its applicability in the oil recovery process. It was practically stable at high temperature and at a wide range of pH, and it recovered above 90% of motor oil adsorbed to a sand sample.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4014/jmb.1701.01033 | DOI Listing |
Integr Environ Assess Manag
January 2025
Engineering Faculty, Department of Environmental Engineering, Istanbul University-Cerrahpasa, Istanbul, Türkiye.
Over the past two decades, research into the accumulation of small plastic particles and fibers in organisms and environmental settings has yielded over 7,000 studies, highlighting the widespread presence of microplastics in ecosystems, wildlife, and human bodies. In recent years, these contaminants have posed a significant threat to human, animal, and environmental health, with most efforts concentrated on removing them from aquatic systems. Given this urgency, the purpose of this study was to investigate the potential of rhamnolipid, a biosurfactant, for the removal of microplastics from water.
View Article and Find Full Text PDFMolecules
December 2024
Unidade de Bioenergia e Biorrefinarias, LNEG-Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal.
Biosurfactants/bioemulsifiers (BSs/BEs) can be defined as surface-active biomolecules produced by microorganisms with a broad range of applications. In recent years, due to their unique properties like biodegradability, specificity, low toxicity, and relative ease of preparation, these biomolecules have attracted wide interest as an eco-friendly alternative for several industrial sectors, escalating global microbial BS/BE market growth. Recently, strain 1B, a bacterium with significant biotechnological potential, well known for its biodesulfurizing properties, carotenoid production, and broad catabolic range, was described as a BS/BE producer.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
January 2025
Department of Virus Reproduction of Danylo Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, Kyiv, Ukraine.
The influx of insufficiently purified or untreated domestic wastewater into aquatic ecosystems raises the question of the production of environmentally friendly detergents. The purpose of this work was to investigate the toxicity of phosphonate-containing and phosphate-free dishwashing detergents for dishwashers according to the phytotest with a garden cress ( L.).
View Article and Find Full Text PDFBioprocess Biosyst Eng
January 2025
Department of Chemical Engineering, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
Cellobiose lipids (CBLs) are a class of glycolipid biosurfactants produced by various fungal strains. These compounds have gained significant interest due to their surface-active and antifungal properties, which are comparable to traditional synthetic surfactants and antimicrobials. Despite their potential applicability in various cosmetic, pharmaceutical, and agricultural formulations, significantly less research has been focused on their production and purification in comparison to other glycolipid biosurfactants, such as mannosylerythritol lipids (MELs) and sophorolipids.
View Article and Find Full Text PDFToxics
December 2024
Postgraduate Program in Biotechnology and Biosciences, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina-Campus Reitor João David Ferreira Lima, Florianópolis 88040-900, SC, Brazil.
Bioremediation, involving the strategic use of microorganisms, has proven to be a cost-effective alternative for restoring areas impacted by persistent contaminants such as polycyclic aromatic hydrocarbons (PAHs). In this context, the aim of this study was to explore hydrocarbon-degrading microbial consortia by prospecting native species from soils contaminated with blends of diesel and biodiesel (20% biodiesel/80% diesel). After enrichment in a minimal medium containing diesel oil as the sole carbon source and based on 16S rRNA, Calmodulin and β-tubulin gene sequencing, seven fungi and 12 bacteria were identified.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!