Deterioration of the mechanical properties of calcium phosphate cements with Poly (γ-glutamic acid) and its strontium salt after in vitro degradation.

J Mech Behav Biomed Mater

Orthopaedic Institute, Department of Orthopaedics, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China. Electronic address:

Published: November 2017

The mechanical reliability of calcium phosphate cements has restricted their clinical application in load-bearing locations. Although their mechanical strength can be improved using a variety of strategies, their fatigue properties are still unclear, especially after degradation. The evolutions of uniaxial compressive properties and the fatigue behavior of calcium phosphate cements incorporating poly (γ-glutamic acid) and its strontium salt after different in vitro degradation times were investigated in the present study. Compressive strength decreased from the 61.2±5.4MPa of the original specimen, to 51.1±4.4, 42.2±3.8, 36.8±2.4 and 28.9±3.2MPa following degradation for one, two, three and four weeks, respectively. Fatigue life under same loading condition also decreased with increasing degradation time. The original specimens remained intact for one million cycles (run-out) under a maximum stress of 30MPa. After degradation for one to four weeks, the specimens were able to withstand maximum stress of 20, 15, 10 and 10MPa, respectively until run-out. Defect volume fraction within the specimens increased from 0.19±0.021% of the original specimen to 0.60±0.19%, 1.09±0.04%, 2.68±0.64% and 7.18±0.34% at degradation time of one, two, three and four weeks, respectively. Therefore, we can infer that the primary cause of the deterioration of the mechanical properties was an increasing in micro defects induced by degradation, which promoted crack initiation and propagation, accelerating the final mechanical failure of the bone cement. This study provided the data required for enhancing the mechanical reliability of the calcium phosphate cements after different degradation times, which will be significant for the modification of load-bearing biodegradable bone cements to match clinical application.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2017.07.026DOI Listing

Publication Analysis

Top Keywords

calcium phosphate
16
phosphate cements
16
degradation
9
deterioration mechanical
8
mechanical properties
8
poly γ-glutamic
8
γ-glutamic acid
8
acid strontium
8
strontium salt
8
salt vitro
8

Similar Publications

Insights into Calcium Phosphate Formation Induced by the Dissolution of 45S5 Bioactive Glass.

ACS Biomater Sci Eng

January 2025

CEA, DES, ISEC, DPME, SEME, University of Montpellier, Marcoule, Bagnols-sur-Cèze F-30207, France.

Although models have been proposed to explain the mechanisms of bioglass (BG) dissolution and subsequent calcium phosphate (CaP) mineralization, open questions remain. The processes in which phase transition occurs in aqueous solutions and their dynamics remain underexplored partly because traditional instruments/techniques do not allow for direct observations at the adequate time and length scales at which such phase transformations occur. For instance, given the crucial role of the silica gel in CaP formation during BG dissolution, uncertainty exists about how such a silica gel forms on the BG surface.

View Article and Find Full Text PDF

Osteoporotic vertebral fractures (OVFs) in elderly patients pose challenges due to bone destruction and surgical risks. This case report describes a minimally invasive approach using calcium phosphate cement (CPC) vertebroplasty and short fusion with cement augmentation of pedicle screws (CAPS) in a 91-year-old woman with severe OVF. The patient underwent CPC vertebroplasty at L1 and CAPS fixation at T12-L2, followed by osteoporosis medication.

View Article and Find Full Text PDF

Cherubism is a rare autosomal dominant skeletal dysplasia, affecting the maxilla and/or mandible. The condition typically has childhood onset, followed by progression until puberty, with subsequent regression. Cherubism lesions share histological features with giant cell tumor of bone, where high-dose monthly denosumab is an effective medical treatment.

View Article and Find Full Text PDF

Bioactive fillers in dental adhesives are designed to release beneficial ions, such as calcium and phosphate, to help in remineralization process, and preventing secondary caries. Their incorporation also aims to improve the longevity of dental restorations. Herein, CaP nanoparticles were synthesized through a water-in-oil emulsion method using Tween80 as a surfactant and methacrylic acid (MAA).

View Article and Find Full Text PDF

Background: This study aimed to develop ion-releasing and antibacterial resin-based dental sealants comprising 3 to 6 wt% monocalcium phosphate monohydrate (MCPM, M), 3 to 6 wt% bioactive glass (BAG, B), and 3 to 6 wt% polylysine (PLS, P). The physical properties, mechanical performance, cytotoxicity, and inhibition of S. mutans biofilm by these materials were subsequently evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!