The chemical composition of inflorescence odours of 80 species of Amorphophallus (Araceae) were determined by headspace-thermal desorption GC-MS. When compared to published molecular phylogenies of the genus, the data reveal evidence both of phylogenetic constraint and plasticity of odours. Dimethyl oligosulphides were found as common constituents of Amorphophallus odours and were the most abundant components in almost half of the species studied. Odours composed mainly of dimethyl oligosulphides, and perceived as being 'gaseous', were only found among Asian species, and some of these species clustered in certain clades in molecular phylogenies; e.g. in two clades in Amorphophallus subgenus Metandrium. However, some species with gaseous odours were found to be closely related to species producing odours more reminiscent of rotting meat in which various minor components accompany the dominant dimethyl oligosulphides. These two broad types of odours have co-evolved with other inflorescence characteristics such as colour, with species with rotting meat odours having darker inflorescences. Species producing pleasant odours characterised by benzenoid compounds constitute two broad groups that are not related in published phylogenies. Species having fruity odours containing 1-phenylethanol derivatives mainly occur in a clade in subgenus Metandrium while those with anise odours composed almost solely of the 2-phenylethanol derivative 4-methoxyphenethyl alcohol are restricted to a clade in subgenus Scutandrium. Phylogenetic mapping of odours also indicates that the evolution of some odour types is likely to have been influenced by ecological factors. For example, species producing fishy odours dominated by trimethylamine and occurring in N and NE Borneo are not all closely related. Conversely, two sister species, A. mossambicensis and A. abyssinicus, which are morphologically very similar and have overlapping geographical distribution, produce odours which are very different chemically. The pressure of pollinator resource has therefore been a factor influencing the evolution of odours in Amorphophallus, driving both the divergence of odour types in some taxa and the convergence of odour types in others.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phytochem.2017.06.006 | DOI Listing |
Anal Chim Acta
February 2025
School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo, 454003, China. Electronic address:
Background: Trimethylamine (TMA) is a colorless, volatile gas with a strong irritating odor. Prolonged exposure to a certain amount of TMA can cause symptoms such as dizziness, nausea and difficulty breathing, and may even be life-threatening. Therefore, effective detection of TMA is crucial.
View Article and Find Full Text PDFPhytochem Anal
January 2025
School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
Introduction: Wenyujin Rhizoma Concisum, named as Pian Jianghuang (PJH) in China, is the decoction piece from the dried rhizome of Curcuma wenyujin Y. H. Chenet C.
View Article and Find Full Text PDFMicrobiome
January 2025
Instituto de Investigación de La Viña y El Vino, Escuela de Ingeniería Agraria, Universidad de León, Avenida de Portugal, 41, León, 24009, Spain.
BMC Oral Health
January 2025
Department of General and Liberal Studies, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana.
Background: There is a paucity of data on oral health problems among the residents of Fanteakwa districts (South and North) in the Eastern region of Ghana. Therefore, this study assessed the prevalence and factors associated with self-reported oral health problems in the Fanteakwa districts of Ghana.
Methods: This community-based cross-sectional study targeted residents of the towns of the Fanteakwa districts, who have not had any dental care visit in the past six months preceding the study.
J Chromatogr A
January 2025
Gansu University of Chinese Medicine, Lanzhou 730000, China. Electronic address:
Gas chromatography-ion mobility spectrometry (GC-IMS) combined with multiple analytical methods and E-nose were used to study the differences in volatile organic compounds (VOCs) in 0 %, 10 %, 15 %, 20 %, 25 % yellow wine steamed A. sinomontanum and its raw products. The results indicated that the VOCs in different proportions of yellow wine steamed A.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!