It is known from studies previously conducted in this laboratory that an iv injection of ovine growth hormone (GH, 100 micrograms/kg BW) or an equimolar amount of somatostatin (SRIF, 7.5 micrograms/kg BW), given to normal conscious dogs into a saphenous vein, leads to a significant increase in hepatic portal plasma serotonin and a simultaneous decrease in the concentrations of dopamine, norepinephrine and epinephrine. The changes take place within 12 minutes after the injection and are observed only in the portal circulation. The purpose of the present experiment was to investigate whether or not similar results could be obtained in diabetic animals. Mongrel dogs were rendered diabetic by surgical pancreatectomy and fitted with an indwelling hepatic portal catheter. Radioenzymatic methods were employed for quantitative measurements of plasma free serotonin and catecholamines. No response was noted when the same type of experiments as those conducted in normal dogs were now carried out in trained, fully conscious totally pancreatectomized dogs deprived of exogenous insulin supply. When the same animals were given an injection into a peripheral vein of 50 mU/kg BW regular crystalline insulin (a small dose that affected neither plasma glucose nor biogenic amine levels) 10 minutes prior to the administration of the other hormones, the usual response to both GH and SRIF was restored, i.e. the data were comparable to those of normal dogs. It is concluded that the GH/SRIF effect on gut biogenic amines is insulin dependent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1055/s-2007-1012340 | DOI Listing |
Endocrine
January 2025
Pediatric Unit, IRCCS AOU of Bologna, Bologna, Italy.
Rev Endocr Metab Disord
January 2025
Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building, 1501 N.W. 10th Avenue, Room 908, Miami, FL, 33136, USA.
Growth hormone (GH)-releasing hormone (GHRH), a hypothalamic peptide initially characterized for its role in GH regulation, has gained increasing attention due to its GH-independent action on peripheral physiology, including that of the cardiovascular system. While its effects on the peripheral vasculature are still under investigation, GHRH and synthetic agonists have exhibited remarkable receptor-mediated cardioprotective properties in preclinical models. GHRH and its analogs enhance myocardial function by improving contractility, reducing oxidative stress, inflammation, and offsetting pathological remodeling.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
October 2024
State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.
The principle of the "growth-defense trade-off" governs how plants adjust their growth and defensive strategies in response to external factors, impacting interactions among plants, herbivorous insects, and their natural enemies. Mineral nutrients are crucial in modulating plant growth and development through their bottom-up effects. Emerging evidence has revealed complex regulatory networks that link mineral nutrients to plant defense responses, influencing the delicate balance between growth and defense against herbivores.
View Article and Find Full Text PDFAlpelisib is a phosphatidylinositol 3-kinase inhibitor approved by the US Food and Drug Administration for the treatment of hormone receptor-positive metastatic breast cancer with (phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α) mutation. In recent years a number of adverse effects have been observed to be associated with this therapy, the most notable of which is hyperglycemia. A literature search was conducted to include case studies, case series, systematic reviews, and meta-analyses within the last 10 years that evaluated patients with mutated hormone receptor-positive, human epidermal growth factor receptor 2 negative metastatic breast cancer.
View Article and Find Full Text PDFOpen Life Sci
January 2025
Henan Provincial Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project, Nanyang Normal University, Nanyang, 473061, China.
Drought is a major abiotic stress in restricting the growth, development, and yield of maize. As a significant epigenetic regulator, small RNA also functions in connecting the transcriptional and post-transcriptional regulatory network. Further to help comprehending the molecular mechanisms underlying drought adaptability and tolerance of maize, an integrated multi-omics analysis of transcriptome, sRNAome, and degradome was performed on the seedling roots of an elite hybrid Zhengdan958 under drought stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!