Quercus rubra has been introduced in Europe since the end of the 17th century. It is widely distributed today across this continent and considered invasive in some countries. Here, we investigated the distribution of genetic diversity of both native and introduced populations with the aim of tracing the origin of introduced populations. A large sampling of 883 individuals from 73 native and 38 European locations were genotyped at 69 SNPs. In the natural range, we found a continuous geographic gradient of variation with a predominant latitudinal component. We explored the existence of ancestral populations by performing Bayesian clustering analysis and found support for two or three ancestral genetic clusters. Approximate Bayesian Computations analyses based on these two or three clusters support recent extensive secondary contacts between them, suggesting that present-day continuous genetic variation resulted from recent admixture. In the introduced range, one main genetic cluster was not recovered in Europe, suggesting that source populations were preferentially located in the northern part of the natural distribution. However, our results cannot refute the introduction of populations from the southern states that did not survive in Europe.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6526120PMC
http://dx.doi.org/10.1139/gen-2016-0187DOI Listing

Publication Analysis

Top Keywords

introduced populations
12
quercus rubra
8
populations
6
introduced
5
america tracking
4
tracking origin
4
origin european
4
european introduced
4
populations quercus
4
rubra quercus
4

Similar Publications

Background: Dementia with Lewy bodies (DLB) is the second most common form of degenerative dementia in older people. The clinical feature of DLB includes cognitive impairment, visual hallucinations, parkinsonism, and fluctuating attention. Three genes, SNCA (-synuclein), APOE (apolipoprotein E), and GBA (glucosylceramidase), have been convincingly demonstrated to be associated with DLB.

View Article and Find Full Text PDF

Background: Several variants have been identified that protect against the development of Alzheimer's disease (AD). Understanding how these alleles convey protection inform us not only about the disease pathogenesis, but also guide therapeutic strategies. The UCI MODEL-AD consortium has developed several protective alleles including a putative gain of function variant of ABCA7, and the APOE Christchurch variant.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Background: The Genome Center for Alzheimer's Disease (GCAD) coordinates the integration and meta-analysis of all available Alzheimer's disease (AD) relevant whole genome sequencing (WGS) data to facilitate the goal of identifying AD risk or protective genetic variants and eventual therapeutic targets. The WGS datasets are generated via the collaboration of scientists from the Alzheimer's Disease Sequencing Project (ADSP) and GCAD. To minimize data heterogeneity introduced by different sequencing protocols and machines, GCAD processes all samples using identical pipelines.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

John P. Hussman Institute for Human Genomics, Miller School of Medicine, Miami, FL, USA.

Background: We previously identified a 44-base pair deletion in (ATP-binding cassette sub-family A member 7) (ABCA7) that is significantly associated with Alzheimer's disease (AD) in African Americans (AA), producing a frameshift mutation resulting in a truncated protein (p.Arg578Alafs). ABCA7 is a lipid transporter across cellular membranes.

View Article and Find Full Text PDF

Background: Pathological tau forms from Alzheimer's disease (AD) brains act as seeds, replicating in cells and forming tau aggregates in a template-like manner. The exploration of this prion-like pathogenic mechanism has predominantly occurred in transgenic mice and cell systems that overexpress tau protein and its truncated forms with pro-aggregation mutations. However, these systems do not entirely capture the propagation kinetics and template conformational changes of various tau seeds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!