Effects of warming rate, acclimation temperature and ontogeny on the critical thermal maximum of temperate marine fish larvae.

PLoS One

Institute of Hydrobiology and Fisheries Science, Center for Earth System Research and Sustainability (CEN), University of Hamburg, Olbersweg 24, Hamburg, Germany.

Published: October 2017

AI Article Synopsis

  • Most thermal tolerance research on fish mainly focuses on juveniles and adults, leaving larvae largely unstudied despite their narrow temperature tolerance range.
  • A review of 53 studies showed diverse methodologies in assessing thermal limits for fish larvae, complicating comparisons across species.
  • This study measured the Critical Thermal Maximum (CTmax) of Atlantic herring and European seabass larvae using a dynamic method, revealing that herring have a lower CTmax and that factors like warming rate and acclimation temperature significantly affect thermal tolerance.

Article Abstract

Most of the thermal tolerance studies on fish have been performed on juveniles and adults, whereas limited information is available for larvae, a stage which may have a particularly narrow range in tolerable temperatures. Moreover, previous studies on thermal limits for marine and freshwater fish larvae (53 studies reviewed here) applied a wide range of methodologies (e.g. the static or dynamic method, different exposure times), making it challenging to compare across taxa. We measured the Critical Thermal Maximum (CTmax) of Atlantic herring (Clupea harengus) and European seabass (Dicentrarchus labrax) larvae using the dynamic method (ramping assay) and assessed the effect of warming rate (0.5 to 9°C h-1) and acclimation temperature. The larvae of herring had a lower CTmax (lowest and highest values among 222 individual larvae, 13.1-27.0°C) than seabass (lowest and highest values among 90 individual larvae, 24.2-34.3°C). At faster rates of warming, larval CTmax significantly increased in herring, whereas no effect was observed in seabass. Higher acclimation temperatures led to higher CTmax in herring larvae (2.7 ± 0.9°C increase) with increases more pronounced at lower warming rates. Pre-trials testing the effects of warming rate are recommended. Our results for these two temperate marine fishes suggest using a warming rate of 3-6°C h-1: CTmax is highest in trials of relatively short duration, as has been suggested for larger fish. Additionally, time-dependent thermal tolerance was observed in herring larvae, where a difference of up to 8°C was observed in the upper thermal limit between a 0.5- or 24-h exposure to temperatures >18°C. The present study constitutes a first step towards a standard protocol for measuring thermal tolerance in larval fish.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5531428PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0179928PLOS

Publication Analysis

Top Keywords

warming rate
16
thermal tolerance
12
larvae
9
effects warming
8
acclimation temperature
8
critical thermal
8
thermal maximum
8
temperate marine
8
fish larvae
8
dynamic method
8

Similar Publications

Global warming and declining rainfall in recent years have led to increased water and soil salinity in Iran agricultural lands. To address these challenges, greenhouse cultivation, particularly soilless culture, emerges as a critical solution for mitigating the effect of soil salinity and water scarcity on vegetable plant production in Iran. The aim of this experiment was to compare the growth and physiological responses of cucumber plants cultivated in both soil and soilless systems, using three distinct nutrient solutions.

View Article and Find Full Text PDF

Anthropogenic emissions of non-CO greenhouse gases, such as low-concentration coal mine methane (cCH < 30 vol%), have a significant impact on global warming. The main component of coal mine methane is methane (CH), which is both a greenhouse gas and a high-quality clean energy gas. To study the combustion and heat transfer reactions of low-concentration coal mine methane in a catalytic oxidation device, a numerical simulation approach was employed to establish a model of the catalytic oxidation device that includes periodic boundary conditions, methane combustion mechanisms, and turbulent-laminar flow characteristics.

View Article and Find Full Text PDF

Ocean's largest chlorophyll-rich tongue is extending westward (2002-2022).

Nat Commun

January 2025

State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361102, China.

Upwelling in the Equatorial Pacific nurtures an expansive, westward-stretching chlorophyll-rich tongue (CRT), supporting 18% of the annual global new production. Surrounding the CRT are the oligotrophic subtropical gyres to the north and south, which are suggested to be expanding under global warming. Yet, how this productive CRT has changed, expanding or contracting, remains unknown.

View Article and Find Full Text PDF

Cholinergic urticaria (CholU) is characterized by itching and/or stinging, painful micro wheals due to systemic heating. There are two standardized protocols to diagnose CholU using an exercise bike with heart rate or warming passive. The objective is to provide an affordable, new, low-tech test to assist the diagnostic.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed a radiative cooling textile (PAC@T) inspired by flamingo feathers, using polyacrylonitrile and alumina particles to enhance cooling and comfort.
  • PAC@T achieves high solar reflectance (95%) and mid-infrared emissivity (91.8%), resulting in effective cooling that is 6.1°C cooler than traditional textiles.
  • The textile is made from common materials and offers advantages like durability and energy-free operation, posing significant potential for future industrial applications in personal thermoregulation.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!