We report high-energy-resolution X-ray absorption spectroscopy detection of ethylene and CO ligands adsorbed on catalytically active iridium centers isolated on zeolite HY and on MgO supports. The data are supported by density functional theory and FEFF X-ray absorption near-edge modelling, together with infrared (IR) spectra. The results demonstrate that high-energy-resolution X-ray absorption spectra near the iridium L (2p ) edge provide clearly ascribable, distinctive signatures of the ethylene and CO ligands and illustrate effects of supports and other ligands. This X-ray absorption technique is markedly more sensitive than conventional IR spectroscopy for characterizing surface intermediates, and it is applicable to samples having low metal loadings and in reactive atmospheres and is expected to have an increasing role in catalysis research by facilitating the determination of mechanisms of solid-catalyzed reactions through identification of reaction intermediates in working catalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201701459 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!