Antibiotic resistance is a major global health problem, one that threatens to derail the benefits garnered from arguably the greatest success of modern medicine, the discovery of antibiotics. Among the most potent agents contributing to antibiotic resistance are metallo-β-lactamases (MBLs). The discovery of MBL-like enzymes in microorganisms that are not in contact with the human population is of particular concern as these proteins already have the in-built capacity to inactivate antibiotics, even though they may not need MBL activity for their survival. Here, we demonstrate that a microbiome from a remote and frozen environment in Alaska harbours at least one highly efficient MBL, LRA-8. LRA-8 is homologous to the B3 subgroup of MBLs and has a substrate profile and catalytic properties similar to well-known members of this enzyme family, which are expressed by major human pathogens. LRA-8 is predominantly a penicillinase, but is also active towards carbapenems, but not cephalosporins. Spectroscopic studies indicate that LRA-8 has an active site structure similar to that of other MBLs (in particular B3 subgroup representative AIM-1), and a combination of steady-state and pre-steady-state kinetic data demonstrate that the enzyme is likely to employ a metal ion-bridging hydroxide to initiate catalysis. The rate-limiting step is the decay of a chromophoric, tetrahedral intermediate, as is observed in various other MBLs. Thus, studying the properties of such "pristine" MBL-like proteins may provide insight into the structural plasticity of this family of enzymes that may facilitate functional promiscuity, while important insight into the evolution of MBLs may also be gained.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7mt00195aDOI Listing

Publication Analysis

Top Keywords

highly efficient
8
antibiotic resistance
8
mbls
5
characterization highly
4
efficient antibiotic-degrading
4
antibiotic-degrading metallo-β-lactamase
4
metallo-β-lactamase uncultured
4
uncultured member
4
member permafrost
4
permafrost community
4

Similar Publications

Methanol (ME) is a liquid hydrogen carrier, ideal for on-site-on-demand H generation, avoiding its costly and risky distribution issues, but this "ME-to-H" electric conversion suffers from high voltage (energy consumption) and competitive oxygen evolution reaction. Herein, we demonstrate that a synergistic cofunctional PtPd/(Ni,Co)(OH) catalyst with Pt single atoms (Pt) and Pd nanoclusters (Pd) anchored on OH-vacancy(V)-rich (Ni,Co)(OH) nanoparticles create synergistic triadic active sites, allowing for methanol-enhanced low-voltage H generation. For MOR, OH* is preferentially adsorbed on Pd and then interacts with the intermediates (such as *CHO or *CHOOH) adsorbed favorably on neighboring Pt with the assistance of hydrogen bonding from the surface hydrogen of (Ni,Co)(OH).

View Article and Find Full Text PDF

Diagnosis and prognosis of melanoma from dermoscopy images using machine learning and deep learning: a systematic literature review.

BMC Cancer

January 2025

Department of Data Science, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran.

Background: Melanoma is a highly aggressive skin cancer, where early and accurate diagnosis is crucial to improve patient outcomes. Dermoscopy, a non-invasive imaging technique, aids in melanoma detection but can be limited by subjective interpretation. Recently, machine learning and deep learning techniques have shown promise in enhancing diagnostic precision by automating the analysis of dermoscopy images.

View Article and Find Full Text PDF

Despite significant advancements in gene delivery and CRISPR technology, several challenges remain. Chief among these are overcoming serum inhibition and achieving high transfection efficiency with minimal cytotoxicity. To address these issues, there is a need for novel vectors that exhibit lower toxicity, maintain stability in serum-rich environments, and effectively deliver plasmids of various sizes across diverse cell types.

View Article and Find Full Text PDF

Two-dimensional halide perovskites are attracting attention due to their structural diversity, improved stability, and enhanced quantum efficiency compared to their three-dimensional counterparts. In particular, Dion-Jacobson (DJ) phase perovskites exhibit superior structural stability compared to Ruddlesden-Popper phase perovskites. The inherent quantum well structure of layered perovskites leads to highly anisotropic charge transport and optical properties.

View Article and Find Full Text PDF

Spermine driven water deficit tolerance in early growth phases of sweet corn genotypes under hydroponic cultivation.

Sci Rep

January 2025

Department of Applied Plant Biology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary.

Sweet corn is highly susceptible to water deprivation, making it crucial to identify effective strategies for enhancing its tolerance to water deficit conditions. This study investigates the novel application of Spermine as a bio-stimulant to improve sweet corn (Zea mays L. var.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!