Antibiotic resistance is a major global health problem, one that threatens to derail the benefits garnered from arguably the greatest success of modern medicine, the discovery of antibiotics. Among the most potent agents contributing to antibiotic resistance are metallo-β-lactamases (MBLs). The discovery of MBL-like enzymes in microorganisms that are not in contact with the human population is of particular concern as these proteins already have the in-built capacity to inactivate antibiotics, even though they may not need MBL activity for their survival. Here, we demonstrate that a microbiome from a remote and frozen environment in Alaska harbours at least one highly efficient MBL, LRA-8. LRA-8 is homologous to the B3 subgroup of MBLs and has a substrate profile and catalytic properties similar to well-known members of this enzyme family, which are expressed by major human pathogens. LRA-8 is predominantly a penicillinase, but is also active towards carbapenems, but not cephalosporins. Spectroscopic studies indicate that LRA-8 has an active site structure similar to that of other MBLs (in particular B3 subgroup representative AIM-1), and a combination of steady-state and pre-steady-state kinetic data demonstrate that the enzyme is likely to employ a metal ion-bridging hydroxide to initiate catalysis. The rate-limiting step is the decay of a chromophoric, tetrahedral intermediate, as is observed in various other MBLs. Thus, studying the properties of such "pristine" MBL-like proteins may provide insight into the structural plasticity of this family of enzymes that may facilitate functional promiscuity, while important insight into the evolution of MBLs may also be gained.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7mt00195a | DOI Listing |
Anal Chem
January 2025
State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China.
The development of intelligent nanotheranostic technology that integrates diagnostic and therapeutic functions holds great promise for personalized nanomedicine. However, most of the nanotheranostic agents exhibit "always-on" properties and do not involve an amplification step, which may largely limit imaging contrast and restrict therapeutic efficacy. Herein, we construct a novel nanotheranostic platform (Hemin/DHPs/PDA@CuS nanocomposite) by assembling DNA hairpin probes (DHPs) and hemin on the surface of PDA@CuS nanosheets that enables amplified fluorescence imaging and activatable chemodynamic therapy (CDT) of tumors.
View Article and Find Full Text PDFOphthalmologie
January 2025
Zentrum für Augenheilkunde, Medizinische Fakultät und Universitätsklinikum Köln, Universität zu Köln, Kerpener Str. 62, 50937, Köln, Deutschland.
Background: Orbital lymphomas are the most frequently occurring malignant tumor entities in this region. They are less frequently also localized in the ocular adnexa and show a high entity-specific heterogeneity regarding the treatment and prognosis.
Objective: This article gives an overview of the heterogeneity of symptoms of orbital lymphoma and lymphoma of the ocular adnexa and focuses on new systemic options for treatment of this disease.
J Org Chem
January 2025
School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China.
A highly efficient Minisci reaction of pyrimidines with alkyl radical generated from visible-light-induced activation of simple C(sp)-H feedstocks such as (cyclo)alkanes, ethers, alcohols, esters, and amides is reported. A mechanistic study revealed that alkyl radical was generated via hydrogen atom transfer (HAT) of C(sp)-H with dichloromethyl radical (·CHCl), which was generated by photoreduction of chloroform.
View Article and Find Full Text PDFAnalyst
January 2025
Department of Engineering and Architecture, University of Trieste, via A. Valerio 6, 34127 Trieste, Italy.
Ergothioneine (ERG) is a natural sulfur-containing amino acid found in many organisms, including humans. It accumulates at high concentrations in red blood cells and is distributed to various organs, including the brain. ERG has numerous health benefits and antioxidant capabilities, and it has been linked to various human physiological processes, such as anti-inflammatory, neuroprotective, and anti-aging effects.
View Article and Find Full Text PDFInorg Chem
January 2025
Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, Guangxi, China.
Here, we reported a highly efficient nitrate electroreduction (NORR) electrocatalyst that integrated alloying and heterostructuring strategies comprising FeCo alloy and MoN (FeCo-MoN/NC). Notably, the maximum NH Faraday efficiency (FE) of 83.24%, NH yield of 12.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!