Objectives: Fatigue, itch, depressed mood, and cognitive impairment significantly impact the quality of life of many patients with primary biliary cholangitis (PBC). Previous neuroimaging studies of non-hepatic diseases suggest that these symptoms are often associated with dysfunction of deep gray matter brain regions. We used resting-state functional magnetic resonance imaging (rsfMRI) to determine whether PBC patients exhibit altered functional connections of deep gray matter.

Methods: Twenty female non-cirrhotic PBC patients and 21 age/gender-matched controls underwent rsfMRI. Resting-state functional connectivity (rsFC) of deep gray matter brain structures (putamen, thalamus, amygdala, hippocampus) was compared between groups. Fatigue, itch, mood, cognitive performance, and clinical response to ursodeoxycholic acid (UDCA) were assessed, and their association with rsFC was determined.

Results: Relative to controls, PBC patients exhibited significantly increased rsFC between the putamen, thalamus, amygdala, and hippocampus, as well as with frontal and parietal regions. Reduced rsFC of the putamen and hippocampus with motor and sensory regions of the brain were also observed. Fatigue, itch, complete response to UDCA, and verbal working memory performance were also associated with altered rsFC of deep gray matter. These rsFC changes were independent of biochemical disease severity.

Conclusions: PBC patients have objective evidence of altered rsFC of the brain's deep gray matter that is in part linked to fatigue severity, itch, response to UDCA therapy, and cognitive performance. These results may guide future approaches to define how PBC leads to altered brain connectivity and provide insight into novel targets for treating PBC-associated brain dysfunction and behavioral symptoms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5539342PMC
http://dx.doi.org/10.1038/ctg.2017.34DOI Listing

Publication Analysis

Top Keywords

deep gray
24
gray matter
20
pbc patients
16
fatigue itch
12
primary biliary
8
biliary cholangitis
8
functional connections
8
brain's deep
8
mood cognitive
8
matter brain
8

Similar Publications

Alpha-synuclein (αS) aggregation is a widely regarded hallmark of Parkinson's disease (PD) and can be detected through synuclein amplification assays (SAA). This study investigated the association between cerebrospinal fluid (CSF) radiological measures in 41 PD patients (14 iPD, 14 GBA1-PD, 13 LRRK2-PD) and 14 age-and-sex-matched healthy controls. Quantitative measures including striatal binding ratios (SBR), whole-brain and deep gray matter volumes, neuromelanin-MRI (NM-MRI), functional connectivity (FC), and white matter (WM) diffusion-tensor imaging (DTI) were calculated.

View Article and Find Full Text PDF

An Automatic Deep-Radiomics Framework for Prostate Cancer Diagnosis and Stratification in Patients with Serum Prostate-Specific Antigen of 4.0-10.0 ng/mL: A Multicenter Retrospective Study.

Acad Radiol

January 2025

Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China (B.Z., F.M., X.S., S.L., Q.W.); Department of Urology, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, Guangdong 510080, China (Q.W.). Electronic address:

Rationale And Objectives: To develop an automatic deep-radiomics framework that diagnoses and stratifies prostate cancer in patients with prostate-specific antigen (PSA) levels between 4 and 10 ng/mL.

Materials And Methods: A total of 1124 patients with histological results and PSA levels between 4 and 10 ng/mL were enrolled from one public dataset and two local institutions. An nnUNet was trained for prostate masks, and a feature extraction module identified suspicious lesion masks.

View Article and Find Full Text PDF

Spatio-temporal variation of air quality and its driving factors in Jinan and Qingdao during 2014-2022.

J Hazard Mater

December 2024

School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China. Electronic address:

Over the past 20 years, urbanization of Shandong Province has strongly supported the rapid growth and sustained transformation of economy, however, this region has suffered from serious atmospheric pollution due to intense human activity. Identifying and qualifying the spatio-temporal variation of air pollution and its driving forces of Shandong Province would help in the formulation of effective mitigation policies. A deep understanding of the coupling relationship between air quality and socioeconomic drivers was essential for evaluating the quality of urbanization and long term sustainability.

View Article and Find Full Text PDF

Accurate diagnosis of pancreatic cancer using CT scan images is critical for early detection and treatment, potentially saving numerous lives globally. Manual identification of pancreatic tumors by radiologists is challenging and time-consuming due to the complex nature of CT scan images and variations in tumor shape, size, and location of the pancreatic tumor also make it challenging to detect and classify different types of tumors. Thus, to address this challenge we proposed a four-stage framework of computer-aided diagnosis systems.

View Article and Find Full Text PDF

Deep learning and genome-wide association meta-analyses of bone marrow adiposity in the UK Biobank.

Nat Commun

January 2025

University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh, UK.

Bone marrow adipose tissue is a distinct adipose subtype comprising more than 10% of fat mass in healthy humans. However, the functions and pathophysiological correlates of this tissue are unclear, and its genetic determinants remain unknown. Here, we use deep learning to measure bone marrow adiposity in the femoral head, total hip, femoral diaphysis, and spine from MRI scans of approximately 47,000 UK Biobank participants, including over 41,000 white and over 6300 non-white participants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!