PTEN controls three-dimensional (3D) glandular morphogenesis by coupling juxtamembrane signaling to mitotic spindle machinery. While molecular mechanisms remain unclear, PTEN interacts through its C2 membrane-binding domain with the scaffold protein β-Arrestin1. Because β-Arrestin1 binds and suppresses the Cdc42 GTPase-activating protein ARHGAP21, we hypothesize that PTEN controls Cdc42 -dependent morphogenic processes through a β-Arrestin1-ARHGAP21 complex. Here, we show that PTEN knockdown (KD) impairs β-Arrestin1 membrane localization, β-Arrestin1-ARHGAP21 interactions, Cdc42 activation, mitotic spindle orientation and 3D glandular morphogenesis. Effects of PTEN deficiency were phenocopied by β-Arrestin1 KD or inhibition of β-Arrestin1-ARHGAP21 interactions. Conversely, silencing of ARHGAP21 enhanced Cdc42 activation and rescued aberrant morphogenic processes of PTEN-deficient cultures. Expression of the PTEN C2 domain mimicked effects of full-length PTEN but a membrane-binding defective mutant of the C2 domain abrogated these properties. Our results show that PTEN controls multicellular assembly through a membrane-associated regulatory protein complex composed of β-Arrestin1, ARHGAP21 and Cdc42.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5576923PMC
http://dx.doi.org/10.7554/eLife.24578DOI Listing

Publication Analysis

Top Keywords

pten controls
16
glandular morphogenesis
12
pten
9
complex pten
8
mitotic spindle
8
morphogenic processes
8
β-arrestin1-arhgap21 interactions
8
cdc42 activation
8
β-arrestin1
5
cdc42
5

Similar Publications

Background: The inheritance of the short allele, encoding the serotonin transporter (SERT) in humans, increases susceptibility to neuropsychiatric and metabolic disorders, with aging and female sex further exacerbating these conditions. Both central and peripheral mechanisms of the compromised serotonin (5-HT) system play crucial roles in this context. Previous studies on SERT-deficient (Sert) mice, which model human SERT deficiency, have demonstrated emotional and metabolic disturbances, exacerbated by exposure to a high-fat Western diet (WD).

View Article and Find Full Text PDF

Objective: To investigate the effects of the exosomal miR-494 targeting phospholipinositol 3-kinase (PI3K)/protein kinase B (AKT)/rapamycin target protein (mTOR) pathway on proliferation, migration, and invasion of trophoblast cells.

Methods: Decidual macrophages were randomly divided into control group, mimic NC group, miR-494 mimic group, inhibitor NC group, and miR-494 inhibitor group. Each group was transfected with corresponding miR-494 mimic NC, miR-494 mimic, and inhibitor NC and miR-494 inhibitor, while the cells of control group were only replaced with fresh medium.

View Article and Find Full Text PDF

Chronic Rapamycin Prevents Electrophysiological and Morphological Alterations Produced by Conditional Pten Deletion in Mouse Cortex.

Cells

January 2025

IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.

Abnormalities in the mammalian target of the rapamycin (mTOR) pathway have been implicated in numerous developmental brain disorders. While the molecular and histological abnormalities have been described, less is known about alterations in membrane and synaptic excitability with chronic changes in the mTOR pathway. In the present study, we used a conditional mouse model with a deletion of the phosphatase and tensin homologue (Pten, a negative regulator of mTOR) from cortical pyramidal neurons (CPNs).

View Article and Find Full Text PDF

Effects of photobiomodulation in mitochondrial quantity, biogenesis and mitophagy-associated genes in breast cancer cells.

Lasers Med Sci

January 2025

Departamento de Biofísica e Biometria Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil.

In this article, we aim to evaluate the effects of photobiomodulation on mitochondria quantity, biogenesis, and mitophagy-associated genes in breast cancer (BC) cells. Both models were irradiated with a low-power infrared laser (880 nm, 150 mW) and amber LED (617 nm, 1500 mW), alone or simultaneously. We evaluated the mRNA expression of PINK1 and PGC-1α genes, and the mitochondrial number was assessed based on the ratio of mitochondrial DNA/genomic DNA (mtDNA/gDNA).

View Article and Find Full Text PDF

MT1JP: A Pivotal Tumor-Suppressing LncRNA and its Role in Cancer Progression and Therapeutic Potential.

Curr Drug Targets

January 2025

Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China.

Metallothionein 1J pseudogene (MT1JP) is a long non-coding RNA (lncRNA) that functions as a tumor suppressor in various malignancies. Reduced MT1JP expression is associated with increased tumor proliferation, migration, invasion, epithelial-mesenchymal transition (EMT), and treatment resistance in nine cancers, such as gastric cancer, intrahepatic cholangiocarcinoma, hepatocellular carcinoma, and breast cancer. Mechanistically, MT1JP acts as a competitive endogenous RNA (ceRNA) to regulate oncogenic microRNAs (miRNAs), including miR-92a-3p, miR-214-3p, and miR-24-3p.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!