Lysine deacetylases (KDACs) are enzymes that reverse the post-translational modification of lysine acetylation. Thousands of potential substrates, acetylated protein sequences, have been identified in mammalian cells. Properly regulated acetylation and deacetylation have been linked to many biological processes, while aberrant KDAC activity has also been linked to numerous diseases. Commercially available peptide substrates that are conjugated to fluorescent dye molecules, such as 7-amino-4-methylcoumarin (AMC), are commonly used to monitor deacetylation in studies addressing both substrate specificity and small molecule modulators of activity. Here, we have compared the activity of several KDACs, representing all major classes of KDACs, with substrates in the presence and absence of AMC as well as peptides for which tryptophan has been substituted for AMC. Our results unequivocally demonstrate that AMC has a significant effect on activity for all KDACs tested. Furthermore, in neither the nature of the effect nor the magnitude is consistent across KDACs, making it impossible to predict the effect of AMC on a particular enzyme-substrate pair. AMC did not affect acetyllysine preference in a multiply acetylated substrate. In contrast, AMC significantly enhanced KDAC6 substrate affinity, greatly reduced Sirt1 activity, eliminated the substrate sequence specificity of KDAC4, and had no consistent effect with KDAC8 substrates. These results indicate that profiling of KDAC activity with labeled peptides is unlikely to produce biologically relevant data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5937523PMC
http://dx.doi.org/10.1021/acs.biochem.7b00270DOI Listing

Publication Analysis

Top Keywords

lysine deacetylases
8
kdac activity
8
activity kdacs
8
activity
7
amc
7
substrates
5
kdacs
5
deacetylases exhibit
4
exhibit distinct
4
distinct changes
4

Similar Publications

Post-translational modifications of histone H3 on lysine 9, specifically acetylation (H3K9ac) and tri-methylation (H3K9me3), play a critical role in regulating chromatin accessibility. However, the role of these modifications in lineage segregation in the mammalian blastocyst remains poorly understood. We demonstrate that di- and tri-methylation marks, H3K9me2 and H3K9me3, decrease during cavitation and expansion of the rabbit blastocyst.

View Article and Find Full Text PDF

Regulation of Histone Acetylation Modification on Biosynthesis of Secondary Metabolites in Fungi.

Int J Mol Sci

December 2024

Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.

The histone acetylation modification is a conservative post-translational epigenetic regulation in fungi. It includes acetylation and deacetylation at the lysine residues of histone, which are catalyzed by histone acetyltransferase (HAT) and deacetylase (HDAC), respectively. The histone acetylation modification plays crucial roles in fungal growth and development, environmental stress response, secondary metabolite (SM) biosynthesis, and pathogenicity.

View Article and Find Full Text PDF

This review provides a comprehensive overview of the role of G9a/EHMT2, focusing on its structure and exploring the impact of its pharmacological and/or gene inhibition in various neurological diseases. In addition, we delve into the advancements in the design and synthesis of G9a/EHMT2 inhibitors, which hold promise not only as a treatment for neurodegeneration diseases but also for other conditions, such as cancer and malaria. Besides, we presented the discovery of dual therapeutic approaches based on G9a inhibition and different epigenetic enzymes like histone deacetylases, DNA methyltransferases, and other lysine methyltransferases.

View Article and Find Full Text PDF

The effect of long-term administration of green tea catechins on aging-related cardiac diastolic dysfunction and decline of troponin I.

Genes Dis

March 2025

Department of Cardiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China.

Article Synopsis
  • Aging increases the risk of cardiovascular diseases, particularly cardiac diastolic dysfunction (CDD), which can lead to heart failure with preserved ejection fraction (HFpEF) in older adults.
  • Research indicates that green tea catechins, specifically epigallocatechin gallate (EGCG), may help improve cardiovascular issues related to aging in both animal models and humans, yet studies on its long-term effects on CDD are limited.
  • In this study, older mice treated with EGCG showed a prevention of aging-related CDD and improvements in heart function, attributed to enhanced expression of cardiac troponin I (cTnI) and reduced mitochondrial damage through the inhibition of histone deacetylase 1 (HDAC1).
View Article and Find Full Text PDF

Purpose: Myocardial ischemia/reperfusion injury (MIRI) is closely associated with ferroptosis. Dexmedetomidine (Dex) has good therapeutic effects on MIRI. This study investigates whether dexmedetomidine (Dex) regulates ferroptosis during MIRI by affecting ferroportin1 (FPN) levels and elucidates the underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!