Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background & Objectives: Aedes aegypti is an important vector for transmission of dengue, yellow fever, chikun- gunya, arthritis, and Zika fever. According to the World Health Organization, it is estimated that Ae. aegypti causes 50 million infections and 25,000 deaths per year. Use of larvicidal agents is one of the recommendations of health organizations to control mosquito populations and limit their distribution. The aim of present study was to deduce a mathematical model to predict the larvicidal action of chemical compounds, based on their structure.
Methods: A series of different compounds with experimental evidence of larvicidal activity were selected to develop a predictive model, using multiple linear regression and a genetic algorithm for the selection of variables, implemented in the QSARINS software. The model was assessed and validated using the OECDs principles.
Results: The best model showed good value for the determination coefficient (R2 = 0.752), and others parameters were appropriate for fitting (s = 0.278 and RMSEtr = 0.261). The validation results confirmed that the model hasgood robustness (Q2LOO = 0.682) and stability (R2-Q2LOO = 0.070) with low correlation between the descriptors (KXX = 0.241), an excellent predictive power (R2 ext = 0.834) and was product of a non-random correlation R2 Y-scr = 0.100).
Interpretation & Conclusion: The present model shows better parameters than the models reported earlier in the literature, using the same dataset, indicating that the proposed computational tools are more efficient in identifying novel larvicidal compounds against Ae. aegypti.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!