Shock-wave-induced high pressure and nanosecond time-resolved Raman spectroscopic experiments were performed to examine the dynamic response of polytetrafluoroethylene (PTFE) in confinement geometry targets. Time-resolved Raman spectroscopy was used to observe the pressure-induced molecular and chemical changes on nanosecond time scale. Raman spectra were measured as a function of shock pressure in the 1.2-2.4 GPa range. Furthermore, the symmetric stretching mode at 729 cm of CF was compared to corresponding static high-pressure measurements carried out in a diamond anvil cell, to see if any general trend can be established. The symmetric stretching mode of CF at 729 cm is the most intense Raman transition in PTFE and is very sensitive to change in pressure. Therefore, it can also be utilized as a pressure gauge for large amplitude shock wave compression experiments. A maximum blueshift of 12 cm for the 729 cm vibrational mode has been observed for the present experimental pressure range. A comparative study on the similarities and differences from the earlier work has been done in detail. One-dimensional radiation hydrodynamic simulations were performed to validate our shock compression results and are in very good agreement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0003702817726542 | DOI Listing |
Anal Chem
January 2025
ICGM, Univ. Montpellier, CNRS, ENSCM, 34000 Montpellier, France.
In this contribution, we apply our newly developed ball-milling platform, which combines Raman spectroscopy and thermal (IR) imaging, as well as acoustic and high-speed optical video recordings, to the synthesis and transformation of citric acid-isonicotinamide (1:2) cocrystal polymorphs in transparent PMMA jars. Particularly, we demonstrate how Raman, temperature, acoustic, and video data are complementary and enable detection and connection of chemical and physical events happening during ball-milling in a time-resolved manner. Importantly, we show that the formation of the three cocrystal polymorphs can be detected through acoustic analyses solely.
View Article and Find Full Text PDFNat Mater
January 2025
Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany.
Electrocatalysts alter their structure and composition during reaction, which can in turn create new active/selective phases. Identifying these changes is crucial for determining how morphology controls catalytic properties but the mechanisms by which operating conditions shape the catalyst's working state are not yet fully understood. In this study, we show using correlated operando microscopy and spectroscopy that as well-defined CuO cubes evolve under electrochemical nitrate reduction reaction conditions, distinct catalyst motifs are formed depending on the applied potential and the chemical environment.
View Article and Find Full Text PDFNanoscale Adv
January 2025
Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University Ke Karlovu 5, 12116, Prague 2 Czech Republic
Heterostructuring of two-dimensional materials offers a robust platform to precisely tune optoelectronic properties through interlayer interactions. Here we achieved a strong interlayer coupling in a double-layered heterostructure of sulfur isotope-modified adjacent MoS monolayers two-step chemical vapor deposition growth. The strong interlayer coupling in the MoS(S)/MoS(S) was affirmed by low-frequency shear and breathing modes in the Raman spectra.
View Article and Find Full Text PDFBiomolecular condensates formed via phase separation of proteins and nucleic acids are crucial for the spatiotemporal regulation of a diverse array of essential cellular functions and the maintenance of cellular homeostasis. However, aberrant liquid-to-solid phase transitions of such condensates are associated with several fatal human diseases. Such dynamic membraneless compartments can contain a range of molecular chaperones that can regulate the phase behavior of proteins involved in the formation of these biological condensates.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, NC 27401, USA.
Facile phase selective synthesis of copper antimony sulphide (CAS) nanostructures is important because of their tunable photoconductive and electrochemical properties. In this study, off-stoichiometric famatinite phase CAS (CAS) quasi-spherical and quasi-hexagonal colloidal nanostructures (including nanosheets) of sizes, 2.4-18.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!