Experimental determination of three-dimensional cervical joint mobility in the avian neck.

Front Zool

Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138 USA.

Published: July 2017

Background: Birds have highly mobile necks, but neither the details of how they realize complex poses nor the evolution of this complex musculoskeletal system is well-understood. Most previous work on avian neck function has focused on dorsoventral flexion, with few studies quantifying lateroflexion or axial rotation. Such data are critical for understanding joint function, as musculoskeletal movements incorporate motion around multiple degrees of freedom simultaneously. Here we use biplanar X-rays on wild turkeys to quantify three-dimensional cervical joint range of motion in an avian neck to determine patterns of mobility along the cranial-caudal axis.

Results: Range of motion can be generalized to a three-region model: cranial joints are ventroflexed with high axial and lateral mobility, caudal joints are dorsiflexed with little axial rotation but high lateroflexion, and middle joints show varying amounts axial rotation and a low degree of lateroflexion. Nonetheless, variation within and between regions is high. To attain complex poses, substantial axial rotation can occur at joints caudal to the atlas/axis complex and zygapophyseal joints can reduce their overlap almost to osteological disarticulation. Degrees of freedom interact at cervical joints; maximum lateroflexion occurs at different dorsoventral flexion angles at different joints, and axial rotation and lateroflexion are strongly coupled. Further, patterns of joint mobility are strongly predicted by cervical morphology.

Conclusion: Birds attain complex neck poses through a combination of mobile intervertebral joints, coupled rotations, and highly flexible zygapophyseal joints. Cranial-caudal patterns of joint mobility are tightly linked to cervical morphology, such that function can be predicted by form. The technique employed here provides a repeatable protocol for studying neck function in a broad array of taxa that will be directly comparable. It also serves as a foundation for future work on the evolution of neck mobility along the line from non-avian theropod dinosaurs to birds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5525307PMC
http://dx.doi.org/10.1186/s12983-017-0223-zDOI Listing

Publication Analysis

Top Keywords

axial rotation
20
joint mobility
12
avian neck
12
joints
9
three-dimensional cervical
8
cervical joint
8
complex poses
8
neck function
8
dorsoventral flexion
8
degrees freedom
8

Similar Publications

Purpose: To clarify the influence of biomechanics on post-operative clinical outcomes in bicruciate-retaining total knee arthroplasty (BCR-TKA).

Methods: Severe medial osteoarthritis who underwent BCR-TKA were examined. Each patient was asked to perform a squat (weight-bearing [WB]) and active assisted knee flexion (non-WB [NWB]) under single fluoroscopy surveillance.

View Article and Find Full Text PDF

Background: Hallux valgus (HV) is a complex, multiplanar deformity. In this study, we examined the interrelationships between various components of this deformity using weightbearing computed tomography (WBCT). We hypothesized that the severity of traditional axial plane deformities would correlate with malpositioning of the metatarsosesamoid complex, first-ray coronal rotational deformity, and malalignment of the hindfoot and midfoot.

View Article and Find Full Text PDF

Preserving Cervical Mobility: A Novel Robot-Assisted Approach for Atlas Fracture Fixation.

Am J Case Rep

January 2025

Department of Orthopedic Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.

BACKGROUND The management of unstable atlas fractures remains a subject of ongoing debate and controversy. The conservative surgical treatment commonly involves fusion, resulting in severe loss of cervical spine mobility, and a large incisions and extensive tissue dissection are required. We aim to introduce a novel concept and surgical approach for treating atlas fracture, one that involves minimizing trauma while maintaining mobility of the upper cervical spine without resorting to fusion.

View Article and Find Full Text PDF

Effect of Clamped Member Material and Thickness on Bolt Self-Loosening Under Transverse Loads.

Materials (Basel)

January 2025

Department of Mechanical Engineering, École de Technologie Supérieure, 1100 Notre-Dame Ouest, Montreal, QC H3C 1K3, Canada.

Bolted joints, prevalent in industrial applications for component fastening, are susceptible to self-loosening-a critical issue resulting in a gradual reduction in clamping force. Gaining insight into the underlying mechanisms of self-loosening is crucial. While prior research has largely focused on evaluating component stiffness, limited attention has been given to its impact on the self-loosening behavior of bolted joints under transverse cyclic loading.

View Article and Find Full Text PDF

Purpose: Currently, no gold standard exists for 3D analysis of virtually planned surgery accuracy postoperatively. The aim of this study was to present a new, validated and standardised methodology for 3D postoperative assessment of surgical accuracy in patients undergoing 3D virtually planned and guided corrective osteotomies.

Methods: All patients who underwent 3D planned corrective osteotomy in 2021-2022 at our center with a postoperative CT were included.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!