Untimely rains in wheat fields during harvest season can cause pre-harvest sprouting (PHS), which deteriorates the yield and quality of wheat crop. Metabolic homeostasis of the embryo plays a role in seed dormancy, determining the status of the maturing grains either as dormant (PHS-tolerant) or non-dormant (PHS-susceptible). Very little is known for direct measurements of global metabolites in embryonic tissues of dormant and non-dormant wheat seeds. In this study, physiologically matured and freshly harvested wheat seeds of PHS-tolerant (cv. Sukang, dormant) and PHS-susceptible (cv. Baegjoong, non-dormant) cultivars were water-imbibed, and the isolated embryos were subjected to high-throughput, global non-targeted metabolomic profiling. A careful comparison of identified metabolites between Sukang and Baegjoong embryos at 0 and 48 h after imbibition revealed that several key metabolic pathways [such as: lipids, fatty acids, oxalate, hormones, the raffinose family of oligosaccharides (RFOs), and amino acids] and phytochemicals were differentially regulated between dormant and non-dormant varieties. Most of the membrane lipids were highly reduced in Baegjoong compared to Sukang, which indicates that the cell membrane instability in response to imbibition could also be a key factor in non-dormant wheat varieties for their untimely germination. This study revealed that several key marker metabolites (e.g., RFOs: glucose, fructose, maltose, and verbascose), were highly expressed in Baegjoong after imbibition. Furthermore, the data showed that the key secondary metabolites and phytochemicals (vitexin, chrysoeriol, ferulate, salidroside and gentisic acid), with known antioxidant properties, were comparatively low at basal levels in PHS-susceptible, non-dormant cultivar, Baegjoong. In conclusion, the results of this investigation revealed that after imbibition the metabolic homeostasis of dormant wheat is significantly less affected compared to non-dormant wheat. The inferences from this study combined with proteomic and transcriptomic studies will advance the molecular understanding of the pathways and enzyme regulations during PHS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5506182PMC
http://dx.doi.org/10.3389/fpls.2017.01203DOI Listing

Publication Analysis

Top Keywords

non-dormant wheat
12
wheat
9
freshly harvested
8
metabolic homeostasis
8
dormant non-dormant
8
wheat seeds
8
revealed key
8
non-dormant
7
dormant
5
baegjoong
5

Similar Publications

Dormancy and dormancy release in white-grained wheat (Triticum aestivum L.).

Planta

January 2021

School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, Glen Osmond, SA, 5064, Australia.

Dormancy in white-grained wheat is conditioned by the cumulative effects of several QTL that delay the onset of the capacity to germinate during ripening and after-ripening. Grain dormancy at harvest-ripeness is a major component of resistance to preharvest sprouting in wheat (Triticum aestivum L.) and an important trait in regions where rain is common during the harvest period.

View Article and Find Full Text PDF

Transcriptomic data during seed maturation in dormant and non-dormant genotypes of wheat ( L.).

Data Brief

August 2019

Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada.

The present data profiles a large scale transcriptome changes in seed tissues (embryo and endosperm) during maturation in dormant and non-dormant genotypes of hexaploid wheat. Seed dormancy is an adaptive trait that has a significant influence on the incidence of preharvest sprouting, which is referred to as the germination of grains on the spike prior to harvest, in wheat. Given that preharvest sprouting causes a substantial yield and quality losses, elucidation of the molecular features that regulate seed dormancy has a paramount significance in the development of preharvest sprouting resistant wheat cultivars.

View Article and Find Full Text PDF

Epistasis analysis of single and double mutants revealed that is a key positive regulator of seed germination, whereas the receptor can negatively regulate germination in dormant seeds and in the dark. The GA receptors were expected to positively regulate germination because the plant hormone gibberellin (GA) is required for seed germination in . The three GA hormone receptors, GID1a, GID1b, and GID1c, positively regulate GA responses via GA/GID1-stimulated destruction of DELLA (Asp-Glu-Leu-Leu-Ala) repressors of GA responses.

View Article and Find Full Text PDF

To gain insights into the roles of cytokinin (CK) and auxin in regulating dormancy during seed maturation in wheat, we examined changes in the levels of CK and indole-3-acetic acid (IAA) and expression patterns of their metabolism and signaling genes in embryonic and endospermic tissues of dormant and non-dormant genotypes. Seed maturation was associated with a decrease in the levels of isopentenyladenine in both tissues mainly via repression of the CK biosynthetic TaLOG genes. Differential embryonic trans-zeatin content and expression patterns of the CK related genes including TacZOG, TaGLU and TaARR12 between maturing seeds of the two genotypes implicate CK in the control of seed dormancy induction and maintenance.

View Article and Find Full Text PDF

Microarray dataset of after-ripening induced mRNA oxidation in wheat seeds.

Data Brief

December 2018

Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, Manitoba, Canada R3T 2N2.

The dataset presented here profiles oxidative modification of mRNAs in wheat seeds in response to after-ripening, a treatment that releases seeds from the state of dormancy. The level of dormancy in wheat seeds is closely associated with preharvest sprouting, defined as the germination of seeds while they are on the mother plant, which negatively affects wheat yield and quality. Understanding the molecular mechanisms involved in the control of seed dormancy is critical for improving the tolerance of wheat seeds to preharvest sprouting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!