Protected surface state in stepped Fe (0 18 1).

Sci Rep

Synchrotron Soleil, L'Orme des Merisiers St Aubin, BP 48, 91192, Gif-sur-Yvette, France.

Published: July 2017

AI Article Synopsis

Article Abstract

Carbon (C) surface segregation from bulk stabilizes the Fe(0 18 1) vicinal surface by forming a c(3[Formula: see text] × [Formula: see text] reconstruction with C zig-zag chains oriented at 45° with respect to the iron surface steps. The iron surface electronic states as measured by high resolution ARPES at normal emission with polarized synchrotron radiation split in two peaks that follow distinct energy dispersion curves. One peak follows the dispersion of the carbon superstructure and is photoexcited only when the polarization vector is parallel to the steps, the second peak disperses similarly to the pristine Fe(0 0 1) surface. Such surface electronic structure is robust as it persists even after coating with an Ag overlayer. The robustness of this surface electronic structure and its similarity with that of the clean Fe(0 0 1) surface make this system of interest for magnetic and spintronic properties such as magneto tunnel junctions based on Fe/MgO interface.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5529575PMC
http://dx.doi.org/10.1038/s41598-017-06896-4DOI Listing

Publication Analysis

Top Keywords

surface electronic
12
surface
8
iron surface
8
fe0 surface
8
electronic structure
8
protected surface
4
surface state
4
state stepped
4
stepped carbon
4
carbon surface
4

Similar Publications

Biomimetic patterning emerges as a promising antibiotic-free approach to protect medical devices from bacterial adhesion and biofilm formation. The main advantage of this approach lies in its simplicity and scalability for industrial applications. In this study, we employ it to produce antibacterial coatings based on silicone materials, widely used in the healthcare industry.

View Article and Find Full Text PDF

This study investigated silicone composites with distributed boron nitride platelets and carbon microfibers that are oriented electrically. The process involved homogenizing and dispersing nano/microparticles in the liquid polymer, aligning the particles with DC and AC electric fields, and curing the composite with IR radiation to trap particles within chains. This innovative concept utilized two fields to align particles, improving the even distribution of carbon microfibers among BN in the chains.

View Article and Find Full Text PDF

Plasma Treatment of Metal Surfaces for Enhanced Bonding Strength of Metal-Polymer Hybrid Structures.

Polymers (Basel)

January 2025

Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Yongin 17104, Republic of Korea.

The adhesion between metals and polymers plays a pivotal role in numerous industrial applications, especially within the automotive and aerospace sectors, where there is a growing demand for materials that are both lightweight and durable. This study introduces an innovative technique to improve the adhesion between a metal and a polymer in hybrid structures through the synergistic use of anodization and plasma treatment. By forming a nanoporous oxide layer on aluminum surfaces, anodization enhances the interface for polymer binding.

View Article and Find Full Text PDF

Improving Industrial Quality Control: A Transfer Learning Approach to Surface Defect Detection.

Sensors (Basel)

January 2025

Centre of Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal.

To automate the quality control of painted surfaces of heating devices, an automatic defect detection and classification system was developed by combining deflectometry and bright light-based illumination on the image acquisition, deep learning models for the classification of non-defective (OK) and defective (NOK) surfaces that fused dual-modal information at the decision level, and an online network for information dispatching and visualization. Three decision-making algorithms were tested for implementation: a new model built and trained from scratch and transfer learning of pre-trained networks (ResNet-50 and Inception V3). The results revealed that the two illumination modes employed widened the type of defects that could be identified with this system, while maintaining its lower computational complexity by performing multi-modal fusion at the decision level.

View Article and Find Full Text PDF

Lithium-ion batteries represent a significant component of the field of energy storage, with a diverse range of applications in consumer electronics, portable devices, and numerous other fields. In view of the growing concerns about the safety of batteries, it is of the utmost importance to develop a sensor that is capable of accurately monitoring the internal temperature of lithium-ion batteries. External sensors are subject to the necessity for additional space and ancillary equipment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!