Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
It has been shown that epigenetic regulation plays an important role in skin wound healing. We previously found that histone H3K27me3 demethylase JMJD3 regulates inflammation and cell migration in keratinocyte wound healing. In this study, we identified Notch1 as a direct target of JMJD3 and NF-κB in wounded keratinocytes using in vitro cell and in vivo animal models. We found that Notch1 is up-regulated in the wound edge and its expression is dependent on JMJD3 and NF-κB in wounded keratinocytes. We also found that Notch1 activates the expression of RhoU and PLAU gene, which are critical regulators of cell migration. Consistently, depletion or inactivation of Notch1 resulted in decreased filopodia formation, increased focal adhesion and actin stress fiber, leading to reduced keratinocyte migration and skin wound healing. Thus, our findings provide the molecular mechanism involving JMJD3/NF-κB-Notch pathway in keratinocyte wound healing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5529578 | PMC |
http://dx.doi.org/10.1038/s41598-017-06750-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!