Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Mass spectrometry is being used to identify protein biomarkers that can facilitate development of drug treatment. Mass spectrometry-based labeling proteomic experiments result in complex proteomic data that is hierarchical in nature often with small sample size studies. The generalized linear model (GLM) is the most popular approach in proteomics to compare protein abundances between groups. However, GLM does not address all the complexities of proteomics data such as repeated measures and variance heterogeneity. Linear models for microarray data (LIMMA) and mixed models are two approaches that can address some of these data complexities to provide better statistical estimates. We compared these three statistical models (GLM, LIMMA, and mixed models) under two different normalization approaches (quantile normalization and median sweeping) to demonstrate when each approach is the best for tagged proteins. We evaluated these methods using a spiked-in data set of known protein abundances, a systemic lupus erythematosus (SLE) data set, and simulated data from multiplexed labeling experiments that use tandem mass tags (TMT). Data are available via ProteomeXchange with identifier PXD005486. We found median sweeping to be a preferred approach of data normalization, and with this normalization approach there was overlap with findings across all methods with GLM being a subset of mixed models. The conclusion is that the mixed model had the best type I error with median sweeping, whereas LIMMA had the better overall statistical properties regardless of normalization approaches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jproteome.6b01050 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!