Systems-level organization of non-alcoholic fatty liver disease progression network.

Mol Biosyst

Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad-500032, India.

Published: August 2017

Non-Alcoholic Fatty Liver Disease (NAFLD) is a complex spectrum of diseases ranging from simple steatosis to Non-Alcoholic Steatohepatitis (NASH) with fibrosis, which can progress to cirrhosis and hepatocellular carcinoma. The pathogenesis of NAFLD is complex, involving crosstalk between multiple organs, cell-types, and environmental and genetic factors. Dysfunction of the adipose tissue plays a central role in NAFLD progression. Here, we analysed transcriptomics data obtained from the Visceral Adipose Tissue (VAT) of NAFLD patients to understand how the VAT metabolism is altered at the genome scale and co-regulated with other cellular processes during the progression from obesity to NASH with fibrosis. For this purpose, we performed Weighted Gene Co-expression Network Analysis (WGCNA), a method that organizes the disease transcriptome into functional modules of cellular processes and pathways. Our analysis revealed the coordination of metabolic and inflammatory modules (termed "immunometabolism") in the VAT of NAFLD patients. We found that genes of arachidonic acid, sphingolipid and glycosphingolipid metabolism were upregulated and co-expressed with genes of proinflammatory signalling pathways and hypoxia in NASH/NASH with fibrosis. We hypothesize that these metabolic alterations might play a role in sustaining VAT inflammation. Furthermore, immunometabolism related genes were also co-expressed with genes involved in Extracellular Matrix (ECM) degradation. Our analysis indicates that upregulation of both ECM degrading enzymes and their inhibitors (incoherent feedforward loop) potentially leads to the ECM deposition in the VAT of NASH with fibrosis patients.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7mb00013hDOI Listing

Publication Analysis

Top Keywords

nash fibrosis
12
non-alcoholic fatty
8
fatty liver
8
liver disease
8
nafld complex
8
adipose tissue
8
vat nafld
8
nafld patients
8
cellular processes
8
co-expressed genes
8

Similar Publications

Unlabelled: Non-alcoholic fatty liver disease (NAFLD) is one of the major causes of chronic liver disease worldwide. There are conflicting reports on the association of serum ferritin levels and its utility in discriminating various stages of liver fibrosis in patients with NAFLD. This study is done to address the conflicts by analysing the National Health and Nutritional Examination Survey 2017-2020 (NHANES 2017-2020) data.

View Article and Find Full Text PDF

Introduction Type 2 diabetes (T2D) and metabolic dysfunction-associated steatotic liver disease (MASLD) have shared pathophysiology. We aim to explore associations between these diseases and the impact of T2D therapies on MASLD-related outcomes in a real-world population. Methods A retrospective cohort study included 153 patients with biopsy-proven MASLD.

View Article and Find Full Text PDF

Predictive performance of noninvasive factors for liver fibrosis in severe obesity: a screening based on machine learning models.

J Diabetes Metab Disord

June 2025

Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha Medical College and Hospitals, Saveetha University, Chennai, India.

Objectives: Liver fibrosis resulting from nonalcoholic fatty liver disease (NAFLD) and metabolic disorders is highly prevalent in patients with severe obesity and poses a significant health challenge. However, there is a lack of data on the effectiveness of noninvasive factors in predicting liver fibrosis. Therefore, this study aimed to assess the relationship between these factors and liver fibrosis through a machine learning approach.

View Article and Find Full Text PDF

Hypoxia-inducible factor-1α inhibitor promotes non-alcoholic steatohepatitis development and increases hepatocellular lipid accumulation via TSKU upregulation.

Arch Biochem Biophys

January 2025

Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510000, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, China. Electronic address:

Non-alcoholic steatohepatitis (NASH) is the progressive form of non-alcoholic fatty liver disease (NAFLD) which is the most common chronic liver disease worldwide. Hypoxia-inducible factor-1α (HIF1α) inhibitor is emerging as a promising therapeutic strategy for diseases. However, the role of HIF1α inhibitor in NASH is still unclear.

View Article and Find Full Text PDF

Cracking the code: lncRNA-miRNA-mRNA integrated network analysis unveiling lncRNAs as promising non-invasive NAFLD biomarkers toward precision diagnosis.

Comput Biol Chem

January 2025

Institute of Global Health and Human Ecology (IGHHE), School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt. Electronic address:

Background: Non-alcoholic fatty liver disease (NAFLD) involves abnormal fat accumulation in the liver, mainly as triglycerides. It ranges from steatosis to non-alcoholic steatohepatitis (NASH), which can lead to inflammation, cellular damage, liver fibrosis, cirrhosis, or hepatocellular carcinoma (HCC). Long non-coding RNAs (lncRNAs) are crucial for regulating gene expression across various conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!