A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

BMP-2 gene activated muscle tissue fragments for osteochondral defect regeneration in the rabbit knee. | LitMetric

Background: Previously published data indicate that BMP-2 gene activated muscle tissue grafts can repair large bone defects in rats. This innovative abbreviated ex vivo gene therapy is appealing because it does not require elaborative and time-consuming extraction and expansion of cells. Hence, in the present study, we evaluated the potential of this expedited tissue engineering approach for regenerating osteochondral defects in rabbits.

Methods: Autologous muscle tissue grafts from female White New Zealand rabbits were directly transduced with an adenoviral BMP-2 vector or remained unmodified. Osteochondral defects in the medial condyle of rabbit knees were treated with either BMP-2 activated muscle tissue implants or unmodified muscle tissue or remained empty. After 13 weeks, repair of osteochondral defects was examined by biomechanical indentation testing and by histology/imunohistochemistry applying an extended O'Driscoll scoring system and histomorphometry.

Results: Biomechanical investigations revealed a trend towards slightly improved mechanical properties of the group receiving BMP-2 activated muscle tissue compared to unmodified muscle treatment and empty defect controls. However, a statistically significant difference was noted only between BMP-2 muscle and unmodified muscle treatment. Also, histological evaluation resulted in slightly higher histological scores and improved collagen I/II ratio without statistical significance in the BMP-2 treatment group. Histomorphometry indicated enhanced repair of subchondral bone after treatment with BMP-2 muscle, with a significantly larger bone area compared to untreated defects.

Conclusions: Gene activated muscle tissue grafts showed potential for osteochondral defect repair. There is room for improvement via the use of appropriate growth factor combinations.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jgm.2972DOI Listing

Publication Analysis

Top Keywords

muscle tissue
28
activated muscle
20
gene activated
12
tissue grafts
12
osteochondral defects
12
unmodified muscle
12
muscle
11
bmp-2
8
bmp-2 gene
8
tissue
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!