We studied activity and kinetic characteristics of lactate dehydrogenase (LDH) in rat brain under conditions of incomplete global ischemia followed by reperfusion against the background of mild hypothermia. It was found that hypothermia leads to a decrease in LDH activity in the ischemic brain; the maximum velocity of the enzyme-catalyzed activity decreased and Michaelis constant increased, due to which the efficiency of catalysis decreased to the level observed in control rats. Ischemia against the background of hypothermia was accompanied by a decrease in the inhibition constant and narrowing of effective pyruvate concentration range. Blood flow resumption in the ischemic brain against the background of mild hypothermia led to an increase in LDH activity, the maximum reaction velocity increased, and Michaelis constant decreased, which lead to a significant increase in the efficiency of catalysis. This was accompanied by an increase in enzyme inhibition constant and a shift of the optimum on the concentration curve towards lower pyruvate concentrations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10517-017-3797-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!